《正弦定理》导学案

《正弦定理》导学案

ID:5521226

大小:26.50 KB

页数:6页

时间:2017-12-16

《正弦定理》导学案_第1页
《正弦定理》导学案_第2页
《正弦定理》导学案_第3页
《正弦定理》导学案_第4页
《正弦定理》导学案_第5页
资源描述:

《《正弦定理》导学案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《正弦定理》导学案《正弦定理》导学案教学目标:1.让学生从已有的几何知识出发,通过对任意三角形边角关系的探索,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,实验,猜想,验证,证明,由特殊到一般归纳出正弦定理,掌握正弦定理的内容及其证明方法,理解三角形面积公式,并学会运用正弦定理解决解斜三角形的两类基本问题。2.通过对实际问题的探索,培养学生观察问题、提出问题、分析问题、解决问题的能力,增强学生的协作能力和交流能力,发展学生的创新意识,培养创造性思维的能力。3.通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创

2、新品质,增强学习的成功心理,激发学习数学的兴趣。4.培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系体现事物之间的普遍联系与辩证统一。五、教学重点与难点教学重点:正弦定理的发现与证明;正弦定理的简单应用。教学难点:正弦定理的猜想提出过程。教学准备:制作多媒体,学生准备计算器,直尺,量角器。六、教学过程:(一)结合实例,激发动机师生活动:师:每天我们都在科技楼里学习,对科技楼熟悉吗?生:当然熟悉。师:那大家知道科技楼有多高吗?学生不知道。激起学生兴趣!师:给大家一个皮尺和测角仪,你能测出楼的高度吗?学生思考片

3、刻,教师引导。生1:在楼的旁边取一个观测点,再用一个标杆,利用三角形相似。师:方法可行吗?生2:B点位置在楼内不确定,故B长度无法测量,一次测量不行。师:你有什么想法?生2:可以再取一个观测点D师:多次测量取得数据,为了能与上次数据联系,我们应把D点取在什么位置?生2:向前或向后师:好,模型如图(2):我们设正弦定理教学设计,正弦定理教学设计,D=10,那么我们能计算出AB吗?生3:由正弦定理教学设计求出AB。师:很好,我们可否换个角度,在正弦定理教学设计中,能求出AD,也就求出了AB。在正弦定理教学设计中,已知两角,也就相当于知道了三个角,和其中一个角的对边,要

4、求出AD,就需要我们研究三角形中的边角关系。师:探究一般三角形中的边角关系,我们应从我们最熟悉的特殊三角形入手!生4:直角三角形。师:直角三角形的边与角之间存在怎样的关系?生:思考交流得出,如图4,在Rt正弦定理教学设计AB中,设B=a,A=b,AB=,则有正弦定理教学设计,正弦定理教学设计,又正弦定理教学设计,则正弦定理教学设计从而在直角三角形AB中,正弦定理教学设计(三)证明猜想,得出定理师生活动:教师:那么,在斜三角形中也成立吗?用几何画板演示,用多媒体的手段对结论加以验证!但特殊不能代替一般,具体不能代替抽象,这个结果还需要严格的证明才能成立,如何证明哪?

5、前面探索过程对我们有没有启发?学生分组讨论,每组派一个代表总结。(以下证明过程,根据学生回答情况进行叙述)教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等师:我们在前面学习了平面向量,向量是解决数学问题的有力工具,而且和向量的联系紧密,那么同学们能否用向量的知识证明正弦定理?学生要思考一下。师:观察式子结构,里面有边及其边的夹角,与向量的哪一部分知识有关?生7:向量的数量积师:那向量的数量积的表达式是什么?生8:正弦定理教学设计师:表达式里是角的余弦,我们要证明的式子里是角的正弦。生:利用诱导公式。师:式子变形为:正弦定理教学设计,再

6、师:很好,那我们就用向量证明正弦定理,同学们请试一试!学生讨论合作,就可以解决这个问题教师:由于时间有限,对正弦定理的证明到此为止,有兴趣的同学下去再探索。设计意图:经历证明猜想的过程,进一步引导启发学生利用已有的数学知识论证猜想,力图让学生体验数学的学习过程。(三)利用定理,解决引例师生活动:教师:现在大家再用正弦定理解决引例中提出的问题。学生:马上得出在正弦定理教学设计中,正弦定理教学设计正弦定理教学设计(四)了解解三角形概念设计意图:让学生了解解三角形概念,形成知识的完整性教师:一般地,把三角形的三个角正弦定理教学设计、正弦定理教学设计、正弦定理教学设计和它

7、们的对边正弦定理教学设计、正弦定理教学设计、正弦定理教学设计叫做三角形的元素,已知,三角形的几个元素,求其他元素的过程叫做解三角形。设计意图:利用正弦定理,重新解决引例,让学生体会用新的知识,新的定理,解决问题更方便,更简单,激发学生不断探索新知识的欲望。(五)运用定理,解决例题师生活动:教师:引导学生从分析方程思想分析正弦定理可以解决的问题。学生:讨论正弦定理可以解决的问题类型:①如果已知三角形的任意两个角与一边,求三角形的另一角和另两边,如正弦定理教学设计;②如果已知三角形任意两边与其中一边的对角,求另一边与另两角,如正弦定理教学设计。师生:例1的处理,先让学

8、生思考回答

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。