欢迎来到天天文库
浏览记录
ID:55196320
大小:52.50 KB
页数:6页
时间:2020-05-02
《陇县教学成果参评.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、新课标下的“体验学习”[内容摘要]《数学课程标准》使用了较多的“经历……的过程,获得……的体验(感受)”。可见,数学学习离不开个体的体验。学生需要在自主探究中体验“再创造”,在实践操作中体验“做数学”,在合作交流中体验“说数学”,在联系生活中体验“用数学”。学生体验学习,是用心去感悟的过程,在体验中思考、创造,有利于培养创新精神和实践能力,提高学生的数学素养。[关键词]新课标体验再创造做数学说数学用数学传统的数学教学是学生被动吸收、机械记忆、反复练习、强化储存的过程,没有主体的体验。沐浴着新课程的阳光,我们“豁然开朗”:教师不是“救世主”,教
2、师只不过是学生自我发展的引导者和促进者。而学生学习数学是以积极的心态调动原有的认知和经验,尝试解决新问题、理解新知识的有意义的过程。 《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,就是个体主动亲历或虚拟地亲历某件事并获得相应的认知和情感的直接经验的活动。让学生亲历经验,不但有助于通过多种活动探究和获取数学知识,更重要的是学生在体验中能够逐步掌握数学学习的一般规律和方法。教师要以“课标”精神为指导,用活用好教材,进行创造性地教,让学生经历学习过程,充分体验数学学习,感受成功的喜悦
3、,增强信心,从而达到学会学习的目的。一、自主探究——让学生体验“再创造”。荷兰数学家弗赖登塔尔说过:“学习数学的唯一正确方法是实行再创造,也就是由学生把本人要学习的东西自己去发现或创造出来;教师的任务是引导和帮助学生去进行这种再创造工作,而不是把现成的知识灌输给学生。”实践证明,学习者不实行“再创造”,他对学习的内容就难以真正理解,更谈不上灵活运用了。如学习小数除法时,计算“9.47÷2.7”,2.79.47竖式上商3.5后,余下的2究竟表示多少?学生不容易理解。于是,我在横式上写出9.47÷2.7=3.5……2,让学生判断是否正确。经过独立
4、思考,不少学生都想到了利用除法是乘法的逆运算来检验:3.5×2.7+2≠9.47,得出余数应该是0.2而不是2,在竖式上的余数2表示2个十分之一,即每次除后的余数数位与商的数位一致。再如学完了“圆的面积”,出示:一个圆,从圆心沿半径切割后,拼成了近似长方形,已知长方形的周长比圆的周长大6厘米,求圆的面积(下图)。乍一看,似乎无从下手,但学生经过自主探究,便能想到:长方形的周长不就比圆周长多出两条宽,也就是两条半径,一条半径的长度是3厘米,问题迎刃而解。 教师作为教学内容的加工者,应站在发展学生思维的高度,相信学生的认知潜能,对于难度不大的例题
5、,大胆舍弃过多、过细的铺垫,尽量对学生少一些暗示、干预,正如“教学不需要精雕细刻,学生不需要精心打造”,要让学生像科学家一样去自己研究、发现,在自主探究中体验,在体验中主动建构知识。二、实践操作——让学生体验“做数学”。教与学都要以“做”为中心。陶行知先生早就提出“教学做合一”的观点,在美国也流行“木匠教学法”,让学生找找、量量、拼拼……因为“你做了你才能学会”。皮亚杰指出:“传统教学的特点,就在于往往是口头讲解,而不是从实际操作开始数学教学。”“做”就是让学生动手操作,在操作中体验数学。通过实践活动,可以使学生获得大量的感性知识,同时有助于
6、提高学生的学习兴趣,激发求知欲。在学习“时分秒的认识”之前,让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。再如“将正方体钢胚锻造成长方体”,为了让学生理解变与不变的关系,让他们每
7、人捏一个正方体橡皮泥,再捏成长方体,体会其体积保持不变的道理。在学习圆柱与圆锥后,学生即使理解了其关系,但遇到圆柱、圆锥体积相等,圆柱高5厘米,圆锥高几厘米之类的习题仍有难度,如果让学生用橡皮泥玩一玩,或许学生就不会再混淆,而能清晰地把握,学会逻辑地思考。对于动作思维占优势的小学生来说,听过了,可能就忘记;看过了,可能会明白;只有做过了,才会真正理解。教师要善于用实践的眼光处理教材,力求把教学内容设计成物质化活动,让学生体验“做数学”的快乐。三、合作交流——让学生体验“说数学”。这里的“说数学”指数学交流。课堂上师生互动、生生互动的合作交流,
8、能够构建平等自由的对话平台,使学生处于积极、活跃、自由的状态,能出现始料未及的体验和思维火花的碰撞,使不同的学生得到不同的发展。因为“个人创造的数学必须取决于数学共
此文档下载收益归作者所有