资源描述:
《数据的离散程度(1).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、4 数据的离散程度1.极差定义:一组数据中的最大数据与最小数据的差叫做这组数据的极差,即极差=最大值-最小值.极差反映了这组数据的波动范围.【例1】在一次体检中,测得某小组5名同学的身高分别是170,162,155,160,168(单位:cm),则这组数据的极差是__________cm.解析:根据极差的概念,用最大值减去最小值即可,170-155=15(cm).答案:152.方差(1)定义:设有n个数据x1,x2,x3,…,xn,各数据与它们的平均数的差的平方分别是(x1-)2,(x2-)2,(
2、x3-)2,…,(xn-)2,用它们的平均数来衡量这组数据的波动大小,并把它叫做这组数据的方差.(2)方差的计算公式:通常用s2表示一组数据的方差,用表示这组数据的平均数.s2=[(x1-)2+(x2-)2+(x3-)2+…+(xn-)2].(3)标准差:标准差就是方差的算术平方根.【例2】已知两组数据分别为:甲:42,41,40,39,38;乙:40.5,40.1,40,39.9,39.5.计算这两组数据的方差.解:甲=×(42+41+40+39+38)=40,s=×[(42-40)2+…+(3
3、8-40)2]=2.乙=×(40.5+40.1+40+39.9+39.5)=40,s=×[(40.5-40)2+…+(39.5-40)2]=0.104.3.极差与方差(或标准差)的异同相同之处:(1)都是衡量一组数据的波动大小的量;(2)一组数据的极差、方差(或标准差)越小,这组数据的波动就越小,也就越稳定.不同之处:(1)极差反映的仅仅是数据的变化范围,方差(或标准差)反映的是数据在它的平均数附近波动的情况;(2)极差的计算最简单,只需要计算数据的最大值与最小值的差即可,而方差的计算比较复杂.【
4、例3】已知甲、乙两支仪仗队队员的身高如下(单位:cm):甲队:178,177,179,178,177,178,177,179,178,179乙队:178,179,176,178,180,178,176,178,177,180(1)将下表填完整:身高(cm)176177178179180甲队(人数)340乙队(人数)211(2)甲队队员身高的平均数为_________cm,乙队队员身高的平均数为_________cm;(3)这两支仪仗队队员身高的极差、方差分别是多少?解:(1)甲队从左到右分别填:0
5、,3,乙队从左到右分别填:4,2;(2)178,178;(3)经过计算可知,甲、乙两支仪仗队队员身高数据的极差分别为2cm和4cm,方差分别是0.6和1.8.4.运用方差解决实际问题方差是反映一组数据的波动大小的统计量,通过计算方差,可以比较两组数据的稳定程度,进而解决一些实际问题.对于一般两组数据来说,可从平均数和方差两个方面进行比较,平均数反映一组数据的一般水平,方差则反映一组数据在平均数左右的波动大小,因此从平均数看或从方差看,各有长处.方差的计算可用一句话“先平均,再求差,然后平方,最后再
6、平均”得到的结果表示一组数据偏离平均值的程度.方差的单位是原数据的平方单位,方差反映了数据的波动大小,在实际问题中,例如长得是否整齐一致、是否稳定等都是波动体现.点技巧方差反映波动情况在实际问题中,如果出现要求分析稳定性的问题,因为方差是反映数据的波动大小的量,所以一般就要计算出各组数据的方差,通过方差的大小比较来解决问题.【例4】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲9582888193798478乙8392809590808
7、575(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.解:(1)甲=(95+82+88+81+93+79+84+78)=85,乙=(83+92+80+95+90+80+85+75)=85.这两组数据的平均数都是85.这两组数据的中位数分别为83,84.(2)派甲参赛比较合适.理由如下:由(1)知甲=乙,s=[(95-85)2+(82-85)2+(88-85)2+(81-85)2+(93-85)2+(79-
8、85)2+(84-85)2+(78-85)2]=35.5,s=[(83-85)2+(92-85)2+(80-85)2+(95-85)2+(90-85)2+(80-85)2+(85-85)2+(75-85)2]=41,∵甲=乙,s<s,∴甲的成绩较稳定,派甲参赛比较合适.5.运用用样本估计总体的思想解决实际问题【例5】某运动队欲从甲、乙两名优秀选手中选一名参加全省射击比赛,该运动队预先对这两名选手进行了8次测试,测得的成绩如下表:次数选手甲的成绩(环)选手乙的成绩(环)19.69.5