2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc

2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc

ID:55159607

大小:2.49 MB

页数:7页

时间:2020-04-29

2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc_第1页
2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc_第2页
2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc_第3页
2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc_第4页
2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc_第5页
资源描述:

《2019_2020学年高中数学第2章平面向量2.3.1平面向量基本定理练习新人教A版必修4.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3.1 平面向量基本定理课时分层训练1.(2019·合肥质检)已知O,A,B,C为同一平面内的四个点,若2+=0,则向量等于(  )A.-    B.-+C.2-D.-+2解析:选C 因为=-,=-,所以2+=2(-)+(-)=-2+=0,所以=2-.故选C.2.已知点M是△ABC的边BC的中点,点E在边AC上,且=2,则=(  )A.+B.+C.+D.+解析:选C 如图,∵=2,∴=+=+=+(-)=+.故选C.3.(2018·常州调研)已知A,B,C三点不共线,且点O满足++=0,则下列结论

2、正确的是(  )A.=+B.=+C.=-D.=--解析:选D ∵++=0,∴O为△ABC的重心,∴=-×(+)=-(+)7=-(++)=-(2+)=--.故选D.4.若向量a与b的夹角为60°,则向量-a与-b的夹角是(  )A.60°B.120°C.30°D.150°解析:选A ∵-a与-b分别为a与b的相反向量.∴-a与-b的夹角为60°.故选A.5.若D点在△ABC的边BC上,且=4=r+s,则3r+s的值为(  )A.B.C.D.解析:选C ∵=4=r+s,∴==(-)=r+s,∴r=,s=

3、-.∴3r+s=-=.故选C.6.已知向量a与b的夹角等于60°,则(1)2a与3b的夹角是________.(2)2a与-b的夹角是________.解析:2a与3b的夹角等于a与b的夹角即为60°;2a与-b的夹角等于a与b夹角的补角,即为120°.答案:(1)60° (2)120°7.已知e1、e2不共线,a=e1+2e2,b=2e1+λe2,要使a,b能作为平面内的一组基底,则实数λ的取值范围为________.解析:若a,b能作为平面内的一组基底,则a与b不共线,则a≠kb(k∈R),又a

4、=e1+2e2,b=2e1+λe2,∴λ≠4.答案:(-∞,4)∪(4,+∞)8.设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC.若=λ1+λ2(λ1,λ2∈R),则λ1+λ2的值为________.7解析:由=-=-=(-)+=-+,得λ1=-,λ2=,从而λ1+λ2=.答案:9.已知向量a,b的夹角为60°,试求下列向量的夹角.(1)-a与b;(2)2a与b.解:(1)如图①,由向量夹角的定义,可知向量-a与b的夹角为120°.(2)如图②,向量2a与b的夹角为60°.10.

5、如图,O,A,B三点不共线,=2,=3,设=a,=b.(1)试用a,b表示向量;(2)设线段AB,OE,CD的中点分别为L,M,N,试证明L,M,N三点共线.解:(1)∵B,E,C三点共线,∴=x+(1-x)=2xa+(1-x)b,①同理,∵A,E,D三点共线,可得=ya+3(1-y)b,②比较①②得解得x=,y=,∴=a+b.(2)证明:∵=,==,=(+)=,=-=,=-=,7∴=6,∴L,M,N三点共线.1.(2019·泉州南安第一中学检测)如图,向量e1,e2,a的起点与终点均在正方形网格的

6、格点上,则向量a用基底e1,e2表示为(  )A.e1+e2B.2e1-e2C.-2e1+e2D.2e1+e2解析:选C 平移e1,e2,由图易知a=+=-2e1+e2.故选C.2.(2019·赣州寻乌中学期末)在△ABC中,AB=2,BC=3,∠ABC=60°,AD为BC边上的高,O为AD的中点,若=λ+μ,则λ+μ=(  )A.1B.C.D.解析:选D 由题知,==(+).又因为BD=AB×cos60°=1,所以=,故=+,因此λ+μ=+=,故选D.3.如图所示,

7、OA,sup6(→))

8、=

9、

10、

11、=1,

12、

13、=,∠AOB=60°,⊥,设=x+y,则(  )A.x=-2,y=-1B.x=-2,y=1C.x=2,y=-1D.x=2,y=1解析:选B 过点C作CD∥OB交AO的延长线于点D,连接BC.由

14、

15、=1,

16、

17、=7,∠AOB=60°,OB⊥OC,知∠COD=30°.在△OCD中,可得OD=2CD=2,则=+=-2+,故x=-2,y=1,故选B.4.已知△ABC是边长为4的正三角形,D,P是△ABC内的两点,且满足=(+),=+,则△APD的面积为(  )A.B.C.D.2解析:选A 取BC

18、的中点E,连接AE,由于△ABC是边长为4的正三角形,则AE⊥BC,=(+),又=(+),所以点D是AE的中点,AD=.取=,以,为邻边作平行四边形,可知=+=+,而△APD是直角三角形,

19、

20、=,所以△APD的面积为××=.5.(2018·江西临川二中月考)已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且

21、b

22、=2

23、a

24、,则向量a与c的夹角为________.解析:由题意可画出图形,如图所示,在△OAB中,因为∠OAB=60°,

25、b

26、=2

27、a

28、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。