欢迎来到天天文库
浏览记录
ID:55130420
大小:26.50 KB
页数:5页
时间:2020-04-28
《借力翻转课堂,让小学生的素养向核心处“漫溯”.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、借力翻转课堂,让小学生的素养向核心处“漫溯” 《图形的放大和缩小》是苏教版六年级下册第三单元第一课时的内容。在此之前,由于学生已经学习了“比”的相关概念,所以教材先让学生初步认识生活中的放大和缩小现象,从而认识到图形的放大与缩小和生活有着密切联系,再让学生经历按指定的比把一个简单图形放大和缩小的操作过程,借助图形的直观变化,帮助他们感知体会图形相似变化的特点。图形的放大和缩小这个内容贯穿整个单元的始�K。 根据本课教材的特点和学生已有的学习经验,我对本节课展开了翻转课堂的尝试。 ●设计自主学习任务单 自主学习任务单是微课程教学法倡导的
2、系统设计“三剑客”之一,其功能在于引导学生在家自主学习。 1.提炼达成目标 达成目标是教学目标的转化形式,是教师对学生通过自主学习应该达到的认知程度、认知水平或认知标准的预期。经过研读教材,我提炼达成目标如下:①结合所创设的情境,了解生活中的放大与缩小的现象;②知道把图形按某一个比放大或缩小,比的前项、后项分别表示什么;③会用比表示出图形放大或缩小前后的关系;④能在方格纸上按一定的比画出放大或缩小的图形;⑤知道图形放大与缩小后,图形的大小变了,但图形的形状不变。 2.设计学习任务 设计学习任务的依据是达成目标。学习目标是否达成,要通过
3、学生完成学习任务的质量来检测。因此,学习任务必须与达成目标配套。本节课的学习任务主要分成三大类。 想一想 ①把图形按某一个比放大或缩小,比的前项表示什么?比的后项表示什么? ②把图形放大或缩小后,图形有什么变化? 画一画 ①先按3∶1的比画出长方形放大后的图形,再按1∶2的比画出长方形缩小后的图形。 ②在方格纸上按1∶4的比画出正方形缩小后的图形。 ③在方格纸上按3∶1的比画出直角三角形放大后的图形。 ④在方格纸上按1∶2的比画出直角梯形缩小后的图形。 填一填 图中②号三角形短直角边的长度是①号三角形短直角边的倍,②号三角
4、形长直角边的长度是①号三角形长直角边的倍。 把①号三角形按∶的比放大得到②号三角形,把②号三角形按∶的比缩小得到①号三角形。 图中号图形是④号长方形放大后的图形,是按∶的比放大的。 图中号图形是④号长方形缩小后的图形,是按∶的比缩小的。 ③号图形是⑤号长方形按∶的比的。 ●设计配套视频 配套视频是学生完成课前自主学习的支架,学生通过观看微视频能更好地破解问题,掌握学习内容,从而为课堂内化知识和拓展能力创造条件。本课微视频主要分为四个部分:①引领学生感知生活中的放大与缩小的现象;②引领学生理解按一定的比将图形放大与缩小,比的前项、后
5、项分别表示的意义;③引领学生自主探究按一定的比放大或缩小图形的方法,并指导思考过程及画的方法;④引领学生通过观察、比较、思考,理解把图形按一定的比放大或缩小,比的大小虽然变了,但图形的形状不变。 ●设计课堂学习任务单 1.设计课堂学习目标 课堂学习目标要满足内化知识和拓展能力的需要,除了强调认知目标的内化之外,更要特别突出情感态度与价值观。据此,我设计了如下课堂学习达成目标:①灵活运用“比”来分析图形放大或缩小前后的变化;②能在方格纸上按一定的比画出放大或缩小的三角形、梯形、平行四边形、圆形;③小组合作,猜想、验证按一定的比放大的图形之
6、间的面积关系;④小组合作、交流、商讨,根据需求灵活地将图形放大或缩小,并创造出美丽的图案。 2.设计课堂学习任务 课始检测 课始检测的范围和难度应与课前任务单、配套视频的范围与难度相当。于是,我设计了如下课始检测。 ①把长方形的每条边放大到原来的3倍,就是把这个图形按∶的比的。 ②把正方形的边长缩小到原来的三分之一,就是把这个图形按∶的比的。 ③把一个长3厘米、宽2厘米的长方形按2∶1的比放大后,长方形的长是厘米,宽是厘米。 ④三角形底9厘米,高6厘米,把这个三角形按1∶3的比缩小后,三角形的底是厘米,高是厘米。 ⑤把一个图形
7、按2∶3的比缩小,现在每条边是原来的。 ⑥一块正方形花手帕,边长10厘米,将其按的比放大后,边长变成30厘米。 进阶作业 进阶作业的目标是拓展学习内容的深度和广度。于是,我设计了如下进阶作业: ①在方格纸上按2∶1的比画出三角形放大后的图形。 ②在方格纸上按1∶2的比画出平行四边形缩小后的图形。 ③在方格纸上按3∶1的比画出圆形放大后的图形。 ④按3∶1的比放大后的圆形,半径是格,放大前与放大后两个圆形的面积比是∶。 猜想:如果把一个图形按n∶1的比放大,放大后与放大前图形的面积比是∶。 思考:怎样验证你的猜想? 交流:和
8、同伴一起交流你的验证方法。 协作探究 协作探究的任务是把学习继续引向深入。协作探究实际上是一个微项目学习,不仅有利于实现学生的深度数学学习,还有利于发展学生的核
此文档下载收益归作者所有