欢迎来到天天文库
浏览记录
ID:55123506
大小:22.06 KB
页数:9页
时间:2020-04-27
《2020届高考数学专题汇编:数列放缩方法.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数列放缩法常见的数列不等式大多与数列求和或求积有关,基本结构有4种:1.形如i=1nai2、13×5+⋯+1n+12n+1<512n∈N*例3.求证:1+122+132+…⋅1+n2<2n∈N*变式1求证:1+122+132+…⋅1+n2<74n∈N*变式2求证:1+122+132+…⋅1+n2<53n∈N*变式3求证:1+132+152+…⋅1(2n-1)2<54n∈N*例4.已知数列an,an=2n2n-1n∈N*求证:i=1naiai-1<3变式.已知数列an,an=2n2n-1n∈N*求证:i=1naiai-1<259例5.求证:13-2+132-22+…+13n-2n<32n∈N*变式.求证:13-2+132-2+…+13n-2<1714n∈N*例6.求证3、:2n+1-1<1+12+13+…+1n<2nn∈N*变式.求证:1+12+13+…+1n<22n+1-1n∈N*例7.求证:12×34×56⋯2n-12n<12n+1n∈N*变式.求证:1+11+141+17⋯1+13n-2>33n+1n∈N*常见放缩公式:平方型:1nn+1<1n2<1nn-1n≥21n2<1n2-1=121n-1-1n+1n≥21n2=44n2<44n2-1=212n-1-12n+112n-12<14nn-1=141n-1-1nn≥2立方型:1n3<1nn2-1=12n1n-1-1n+1=121n-1n-1nn+1n≥2根式型:2n+1-n=2n+1+n4、<1n=22n<2n+n-1=2n-n-11n=2222n<222n-1+2n+1=22n+1-2n-11n+2=22n+2<2n+2+n=n+2-n1nn+1<1n+n-1=n-n-1指数型:1an-bn≤1an-1a-ba>b≥1证:1an-bn=1an-1a-b⋅ban-1≤1an-1a-b⋅ba0=1an-1a-b1an-b≤1an-1a-ba>b≥1证:1an-b=1an-1a-ban-1≤1an-1a-ba0=1an-1a-b13n<13n-2≤13n-114n<14n-3≤14n-114n<14n-1≤13⋅4n-1奇偶型:2n-12n<2n-12n-12n+15、<2n-12n+1
2、13×5+⋯+1n+12n+1<512n∈N*例3.求证:1+122+132+…⋅1+n2<2n∈N*变式1求证:1+122+132+…⋅1+n2<74n∈N*变式2求证:1+122+132+…⋅1+n2<53n∈N*变式3求证:1+132+152+…⋅1(2n-1)2<54n∈N*例4.已知数列an,an=2n2n-1n∈N*求证:i=1naiai-1<3变式.已知数列an,an=2n2n-1n∈N*求证:i=1naiai-1<259例5.求证:13-2+132-22+…+13n-2n<32n∈N*变式.求证:13-2+132-2+…+13n-2<1714n∈N*例6.求证
3、:2n+1-1<1+12+13+…+1n<2nn∈N*变式.求证:1+12+13+…+1n<22n+1-1n∈N*例7.求证:12×34×56⋯2n-12n<12n+1n∈N*变式.求证:1+11+141+17⋯1+13n-2>33n+1n∈N*常见放缩公式:平方型:1nn+1<1n2<1nn-1n≥21n2<1n2-1=121n-1-1n+1n≥21n2=44n2<44n2-1=212n-1-12n+112n-12<14nn-1=141n-1-1nn≥2立方型:1n3<1nn2-1=12n1n-1-1n+1=121n-1n-1nn+1n≥2根式型:2n+1-n=2n+1+n
4、<1n=22n<2n+n-1=2n-n-11n=2222n<222n-1+2n+1=22n+1-2n-11n+2=22n+2<2n+2+n=n+2-n1nn+1<1n+n-1=n-n-1指数型:1an-bn≤1an-1a-ba>b≥1证:1an-bn=1an-1a-b⋅ban-1≤1an-1a-b⋅ba0=1an-1a-b1an-b≤1an-1a-ba>b≥1证:1an-b=1an-1a-ban-1≤1an-1a-ba0=1an-1a-b13n<13n-2≤13n-114n<14n-3≤14n-114n<14n-1≤13⋅4n-1奇偶型:2n-12n<2n-12n-12n+1
5、<2n-12n+1
此文档下载收益归作者所有