欢迎来到天天文库
浏览记录
ID:54987976
大小:24.50 KB
页数:2页
时间:2020-04-25
《初中数学知识点总结特殊的平行四边形.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、初中数学知识点总结:特殊的平行四边形知识点总结一、特殊的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。(3)判定定理:①有一个角是直角的平行四边形叫做矩形。 ②对角线相等的平行四边形是矩形。 ③有三个角是直角的四边形是矩形。直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。2.菱形:(1)定义:邻边相等的平行四边形。(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 (3)判定定理:①一组邻边相等的平行四边形是菱形。②对角线互相垂直的平行四边形是菱形。③四条边相等的四
2、边形是菱形。(4)面积: 3.正方形:(1)定义:一个角是直角的菱形或邻边相等的矩形。(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。正方形既是矩形,又是菱形。(3)正方形判定定理:①对角线互相垂直平分且相等的四边形是正方形;②一组邻边相等,一个角为直角的平行四边形是正方形;③对角线互相垂直的矩形是正方形;④邻边相等的矩形是正方形⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形。二、矩形、菱形、正方形与平行四边形、四边形之间的联系:1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”
3、的条件得到的,它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。三、判定一个四边形是特殊四边形的步骤: 常见考法(1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;(2)灵活运用判
4、定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;(3)一些折叠问题;(4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。 误区提醒(1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;(2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;(3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);(3)再利用对角线长度求菱形
5、的面积时,忘记乘;(3)判定一个四边形是特殊的平行四边形的条件不充分。
此文档下载收益归作者所有