欢迎来到天天文库
浏览记录
ID:54977128
大小:603.00 KB
页数:5页
时间:2020-04-25
《高中数学人教版必修4知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高中数学必修4知识点6、半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.7、弧度制与角度制的换算公式:,,.8、若扇形的圆心角为,半径为,弧长为,周长为,面积为,则,,.9、设是一个任意大小的角,的终边上任意一点的坐标是,它与原点的距离是,则,,.10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.PvxyAOMT11、三角函数线:,,.12、同角三角函数的基本关系:;.13、三角函数的诱导公式:口诀:奇变偶不变,符号看象限.14→向左(右)平移个单位长
2、度→的图象→横坐标伸长(缩短)到原来的倍(纵坐标不变)→→纵坐标伸长(缩短)到原来的倍(横坐标不变)→.→横坐标伸长(缩短)到原来的倍(纵坐标不变),→→向左(右)平移个单位长度→→纵坐标伸长(缩短)到原来的倍(横坐标不变)→函数的性质:①振幅:;②周期:;③频率:;④相位:;⑤初相:.函数,当时,取得最小值为;当时,取得最大值为,则,,.15、正弦函数、余弦函数和正切函数的图象与性质:函数性质图象定义域值域最值当时,;当时,.当时,;当时,.既无最大值也无最小值周期性奇偶性奇函数偶函数奇函数单调性在上是增函
3、数;在在上是增函数;在在上是增函数.上是减函数.上是减函数.对称性对称中心对称轴对称中心对称轴对称中心无对称轴16、向量:既有大小,又有方向的量.数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度.零向量:长度为的向量.单位向量:长度等于个单位的向量.平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.相等向量:长度相等且方向相同的向量.17、向量加法运算:⑴三角形法则的特点:首尾相连.⑵平行四边形法则的特点:共起点.⑶三角形不等式:⑷运算性质:①交换律:;②结合律:;③.⑸坐
4、标运算:设,,则.18、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量.⑵坐标运算:设,,则.设、两点的坐标分别为,,则.19、向量数乘运算:⑴实数与向量的积是一个向量的运算叫做向量的数乘,记作.①;②当时,的方向与的方向相同;当时,的方向与的方向相反;当时,.⑵运算律:①;②;③.⑶坐标运算:设,则.20、向量共线定理:向量与共线,当且仅当有唯一一个实数,使.设,,其中,则当且仅当时,向量、共线.21、平面向量基本定理:如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有
5、且只有一对实数、,使.(不共线的向量、作为这一平面内所有向量的一组基底)22、分点坐标公式:设点是线段上的一点,、的坐标分别是,,当时,点的坐标是.23、平面向量的数量积:⑴.零向量与任一向量的数量积为.⑵性质:设和都是非零向量,则①.②当与同向时,;当与反向时,;或.③.⑶运算律:①;②;③.⑷坐标运算:设两个非零向量,,则.若,则,或.设,,则.设、都是非零向量,,,是与的夹角,则.24、两角和与差的正弦、余弦和正切公式:25、二倍角的正弦、余弦和正切公式:26、,其中.
此文档下载收益归作者所有