二元一次不等式(组)与平面区域教学设计.doc

二元一次不等式(组)与平面区域教学设计.doc

ID:54949809

大小:276.50 KB

页数:4页

时间:2020-04-24

二元一次不等式(组)与平面区域教学设计.doc_第1页
二元一次不等式(组)与平面区域教学设计.doc_第2页
二元一次不等式(组)与平面区域教学设计.doc_第3页
二元一次不等式(组)与平面区域教学设计.doc_第4页
资源描述:

《二元一次不等式(组)与平面区域教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:§3.3.1二元一次不等式(组)与平面区域授课类型:新授课【教学目标】1.知识与技能:巩固二元一次不等式和二元一次不等式组所表示的平面区域;能根据实际问题中的已知条件,找出约束条件;2.过程与方法:经历把实际问题抽象为数学问题的过程,体会集合、化归、数形结合的数学思想;3.情态与价值:结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新。【教学重点】理解二元一次不等式表示平面区域并能把不等式(组)所表示的平面区域画出来;【教学难点】把实际问题抽象化,用二元一次不等式(组)表示平面区域。【教学过程】1.课题导入[复习引入]二元一次不等式Ax+By+C>0在平面直角坐

2、标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)判断方法:由于对在直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.(特殊地,当C≠0时,常把原点作为此特殊点)。随堂练习11、画出不等式2+y-6<0表示的平面区域.2、画出不等式组表示的平面区域。2.讲授新课【应用举例】例3某人准备投资1200万兴办一所完全中学,对教育市场进行调查后,他得到了下面的数据表格

3、(以班级为单位):学段班级学生人数配备教师数硬件建设/万元教师年薪/万元初中45226/班2/人高中40354/班2/人分别用数学关系式和图形表示上述的限制条件。解:设开设初中班x个,开设高中班y个,根据题意,总共招生班数应限制在20-30之间,所以有考虑到所投资金的限制,得到即另外,开设的班数不能为负,则把上面的四个不等式合在一起,得到:用图形表示这个限制条件,得到如图的平面区域(阴影部分)例4一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐18t;生产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐15t,现库存磷酸盐10t、硝酸盐66t,在此基础上生产两种混

4、合肥料。列出满足生产条件的数学关系式,并画出相应的平面区域。解:设x,y分别为计划生产甲乙两种混合肥料的车皮数,于是满足以下条件:在直角坐标系中可表示成如图的平面区域(阴影部分)。[补充例题]例1、画出下列不等式表示的区域(1);(2)分析:(1)转化为等价的不等式组;(2)注意到不等式的传递性,由,得,又用代,不等式仍成立,区域关于轴对称。解:(1)或矛盾无解,故点在一带形区域内(含边界)。(2)由,得;当时,有点在一条形区域内(边界);当,由对称性得出。指出:把非规范形式等价转化为规范不等式组形式便于求解例2、利用区域求不等式组的整数解分析:不等式组的实数解集为三条直线,,所围成的

5、三角形区域内部(不含边界)。设,,,求得区域内点横坐标范围,取出的所有整数值,再代回原不等式组转化为的一元不等式组得出相应的的整数值。解:设,,,,,,∴,,。于是看出区域内点的横坐标在内,取=1,2,3,当=1时,代入原不等式组有⇒,得=-2,∴区域内有整点(1,-2)。同理可求得另外三个整点(2,0),(2,-1),(3,-1)。指出:求不等式的整数解即求区域内的整点是教学中的难点,它为线性规划中求最优整数解作铺垫。常有两种处理方法,一种是通过打出网络求整点;另一种是本题解答中所采用的,先确定区域内点的横坐标的范围,确定的所有整数值,再代回原不等式组,得出的一元一次不等式组,再确定

6、的所有整数值,即先固定,再用制约。3.随堂练习21.(1);(2).;(3).2.画出不等式组表示的平面区域3.课本第97页的练习44.课时小结进一步熟悉用不等式(组)的解集表示的平面区域。5.评价设计1、课本第105页习题3.3[B]组的第1、2题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。