等腰梯形教学设计.doc

等腰梯形教学设计.doc

ID:54946199

大小:97.00 KB

页数:4页

时间:2020-04-24

等腰梯形教学设计.doc_第1页
等腰梯形教学设计.doc_第2页
等腰梯形教学设计.doc_第3页
等腰梯形教学设计.doc_第4页
资源描述:

《等腰梯形教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、理解教材、运用教材、超越教材课题学习之——等腰梯形的性质【教学目标】1.知识与技能(1)能探索并掌握等腰梯形的性质,并能灵活应用。(2)学会通过添加辅助线将等腰梯形分解成平行四边形与三角形的方法从而解决问题。(3)通过对平行四边形、三角形、等腰梯形性质的类比学习,举一反三,培养学生的知识迁移能力和发散思维.2.过程与方法(1)通过观察、实验、猜测、验证、推理、交流得出等腰梯形的性质,发展学生的分析能力、抽象思维能力和识图能力。(2)通过自主探索、合作交流,总结出解决等腰梯形问题的方法,发展实践能力。3.

2、情感态度与价值观(1)通过自主探究活动,激发学生学习的兴趣,感受数学美。(2)体验数学活动中充满着探索与创造,感受数学的严谨性。(3)在解决等腰梯形问题的过程中渗透转化思想,将未知化归成已知,发展合情推理能力。【教学重难点】重点:等腰梯形的性质及应用。难点:等腰梯形的辅助线的运用。【课堂导学】一、问题探究:引入:(开场白:学习完四边形这一章,知识内容的顺序、学习探究性质和判定定理的方法),其中平行四边形是基础图形,在它的基础上将边或者角,条件特殊化,从而得到了一系列特殊的平行四边形。今天我们在已有的学习

3、经验和方法上,继续来探究四边形。)下列命题正确的是()A、两组对边分别平行的四边形是平行四边形。B、两组对边分别相等的四边形是平行四边形。C、一组对边平行且相等的四边形是平行四边形。D、一组对边平行,另一组对边相等的四边形是平行四边形。得出:等腰梯形定义:+(复习梯形定义)+(拓展:直角梯形的定义)(边、角特殊化得来)(自主尺规作图等腰梯形+几何画板展示+学生举手对作图方法反馈)概念介绍:上底、下底、腰、高的定义,同一底上的两个底角二、探索新知探究验证,感受过程1、(性质探究:按照学习平行四边形、矩形、

4、菱形、正方形探究对象、方法,对自己所画图形的边、角、对角线,自主探究2分钟)2、小组合作学习,交流分享成果3、展示小组成果(点评并省略:内角和、平行、同旁内角互补、对称图形、对称轴)等腰梯形的性质:(1)等腰梯形两腰相等;(2)等腰梯形同一底边上的两个底角相等;(3)等腰梯形两条对角线相等;引导学生总结性质,省略已经熟悉的结论,留下最常用、最有价值的3条,与之前所学四边形时,所研究的结构相呼应.例1、已知梯形ABCD为等腰梯形,AB=CD,求证:∠B=∠C.方法1:证明三角形全等方法2:构造平行四边形+

5、等腰例2、已知梯形ABCD为等腰梯形,AB=CD,求证:AC=BD.方法1:证明三角形全等方法2:构造平行四边形+等腰总结转化思想:1、将等腰梯形分解成平行四边形或三角形,从而解决等腰梯形问题;2、在构造的过程中,均体现出了上底与下底之差。跟踪练习:1、(1)在四边形ABCD中,∠A:∠B:∠C:∠D=7:2:4:5,这个四边形为__________.(2)等腰梯形中,上底:腰:下底=1:2:3,则下底角的度数是________.(3)直角梯形的一底与一腰的夹角是30°,并且这腰长6cm,则另一腰长为_

6、____cm.2、如图,在等腰梯形ABCD中,AD∥BC,AD=3,AB=5,BC=7,且AB∥DE,则△DEC的周长是_______,等腰梯形ABCD的面积为__________.3、如图,在等腰梯形ABCD中,AD=2cm,BC=4cm,高DF=2cm,则DC=_______cm。.第2题4、等腰梯形ABCD的对角线的夹角是60°,AD+BC=5cm,则对角线的长度为________cm。第4题第3题(只核对答案+简单点评)例3、如图,在梯形ABCD中,AB∥CD,AD=BC,延长AB到E,使BE=

7、DC,求证:AC=CE(性质的综合运用)(独立思考+独立书写过程+抽学生板书过程)5分钟(只分析+学生自己写证明过程+抽学生板书过程)例4、在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD,E、F分别为AB、CD的中点,若EF=8,试求(1)EF=(AD+BC);(2)等腰梯形ABCD的面积.(中位线)设计:1、复习三角形的中位线定理2、三角形与梯形之间有何联系?3、梯形是否也具有相似的定理?4、请证明(1)小问;(学生板书过程)5、完成第2小问6、我板书定理的文字语言、图形语言、几何语言跟踪练习:1

8、、一个等腰梯形的周长是80cm,且它的中位线长与腰长相等,它的高长12cm这个梯形的面积是()A、60cm2B、120cm2C、240cm2D、300cm22、如图,梯形ABCD中,AD∥BC,M、N分别为对角线BD、AC的中点,若AD=4cm,BC=8cm,求MN的长.(学生独立完成)找学生说解题思路+换学生说解答过程+其他同学自行核对并找错(同桌之间相互检查证明过程)3、已知四边形ABCD是直角梯形,AD//BC,∠B=90°,AB=1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。