欢迎来到天天文库
浏览记录
ID:54766035
大小:298.00 KB
页数:5页
时间:2020-04-21
《【湘教版】七年级数学下册:第5章《轴对称与旋转》复习教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、轴对称与旋转知识梳理1.轴对称、轴对称图形的概念⑴如果一个图形沿一条直线折叠,直线两旁的部分能够______,这个图形就叫做轴对称图形,这条直线就是它的________.⑵把一个图形沿着某一条直线折叠,如果它能与另一个图形重合,那么就说这两个图形_________,这条直线叫做_______,折叠后重合的点是对应点,叫做________.2.轴对称变换(1)由一个平面图形可以得到它关于一条直线l_________的图形,这个图形与原图形的_______完全相同.(2)点P(x,y)关于x轴对称的点的坐标为________;点P(x,y)关于y轴对称的点的坐标为_______.3
2、.旋转:在平面内,将一个图形绕着一个沿着转动一个角度,这样的图形运动称为旋转.这个定点为,转动的角度为.图形的旋转有三个基本要素:、和.图形的旋转是由旋转中心和旋转角所决定的.4.旋转的性质:(1)旋转变化前后对应线段、对应角分别,图形的大小、形状.(2)旋转过程中,图形上每一点都绕旋转中心沿相同的方向旋转相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离都.5.旋转作图:旋转作图的关键在“转线”,即找出各个关键点的对应点,“转线”的实质就是“转化”,将旋转作图问题转化为线段的旋转作图问题.旋转作图的一般步骤:(1)连点:将原图中的一个与连接;
3、(2)转线:将关键点与旋转中心所连的线段绕旋转中心按指定的方向旋转一个,得到这个关键的对应点;(3)连接:按原图的连接方式,连接各关键点的对应点.考点呈现考点1轴对称图形的识别例1(2012年广东梅州)下列图形中是轴对称图形的是()ABCD解析:根据轴对称图形的概念对各选项分析判断后得解.应选C.点评:本题考查轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,看图形的两部分沿对称轴折叠后是否重合.考点2作轴对称图形例2(2012年山东潍坊)甲、乙两位同学用围棋子做游戏.如图2所示,现轮到黑棋下子,黑棋下子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称
4、图形.则下列下子方法不正确的是().[说明:棋子的位置用数对表示,如A点在(6,3)]A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)分析:分别将选项所说的黑、白棋子放入图形,再由轴对称的定义进行判断即可得出答案.解:A选项若放入黑(3,7),白(5,3),则此时黑棋是轴对称图形,白棋也是轴对称图形;B选项若放入黑(4,7),白(6,2),则此时黑棋是轴对称图形,白棋也是轴对称图形;C选项若放入黑(2,7),白(5,3),则此时黑棋不是轴对称图形,白棋是轴对称图形;D选项若放入黑(3,7),白(2,6),则
5、此时黑棋是轴对称图形,白棋也是轴对称图形.故选C.点评:本题考查了轴对称图形的定义,注意将选项中各棋子按位置放入,然后检验是否为轴对称图形.考点3图形的旋转例3分析图3-①,3-②,3-④中阴影部分的分布规律,按此规律在图3-③中画出其中的阴影部分.分析:由图3-①,3-②来看,图3-②是由图3-①绕着中心顺时针旋转得到的,图3-④是图3-②顺时针旋转得到的,由于本题按图3-①到图3-②的规律分布,因此图3-③是由图3-②顺时针旋转得到的.解:旋转后如图⑤.图4说明:注意细心观察图形的变化规律.例4(2011年嘉兴市)如图4,点A,B,C,D,O都在方格纸的格点上,若△COD是
6、由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°分析:由于对应点与旋转中心的连线的夹角就是旋转角,所以∠BOD和∠AOC都是旋转角,由此,结合图形即可求解.解:由图可知,OB、OD是对应边,∠BOD是旋转角,所以旋转角∠BOD=90°.故应选C.说明:求解本题的关键是要根据题意,确定旋转中心、旋转方向和旋转角.考点4旋转作图例5(2011年黑龙江省黑河市)如图5,每个小方格都是边长为1个单位长度的小正方形.(1)将△ABC向右平移3个单位长度,画出平移后的△A1B1C1.(2)将△ABC绕点O旋转180°,画出旋转后的△A2B2
7、C2.(3)画出一条直线将△AC1A2的面积分成相等的两部分.分析:对于(1)和(2)可依据图形的平移、旋转等步骤进行作图.(4)可利用三角形一边上的中线平分其面积求解.解:依题意,得(1)将△ABC向右平移3个单位长度得△A1B1C1,如图6所示.(2)将△ABC的三个顶点A,B,C绕点O旋转180°后得A2,B2,C2,连接得到△A2B2C2,如图6所示.(3)因为点O是AA2的中点,而三角形一边上的中线平分三角形的面积,于是可过点O,C1作直线OC1,如图6所示.说明:本题考查了图形的
此文档下载收益归作者所有