欢迎来到天天文库
浏览记录
ID:54295506
大小:1.22 MB
页数:13页
时间:2020-04-30
《【北师大版】数学八年级下册课件:第四章公式法1.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、公式法一、新课引入试计算:9992+1998+12×999×1=(999+1)2=106此处运用了什么公式?完全平方公式逆用就像平方差公式一样,完全平方公式也可以逆用,从而进行一些简便计算与因式分解。即:完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首平方,尾平方,首尾两倍在中央。二、完全平方式1、回答:下列各式是不是完全平方式是是是否是否多项式是否是完全平方式a、b各表示什么表示为:表示为或形式2.填写下表是是不是是不是不是a表示:xb表示:3a表示:2yb表示:1a表示:2x+yb表示:33、请补上
2、一项,使下列多项式成为完全平方式·例5,分解因式:(1)16x2+24x+9分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32a22abb2+·+解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2.三、新知识或新方法运用例5:分解因式:(2)–x2+4xy–4y2.解:(2)–x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]=-(x-2y)2三、新知识或新方法运用例6:分解因式:(1)3ax2+6axy
3、+3ay2;(2)(a+b)2-12(a+b)+36.分析:在(1)中有公因式3a,应先提出公因式,再进一步分解。解:(1)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2(2)(a+b)2-12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.三、新知识或新方法运用1:如何用符号表示完全平方公式?a2+2ab+b2=(a+b)2,a2-2ab+b2(a-b)2.2:完全平方公式的结构特点是什么?四、小结完全平方式的特点:1、必须是三项式(或可以看成三项的)2、有两个同号的平方项3、有一个乘积项(等于平方项底数的±2倍)简记口诀:首
4、平方,尾平方,首尾两倍在中央。练习1.下列多项式是不是完全平方式?为什么(1)a2-4a+4;(2)1+4a2;(3)4b2+4b-1;(4)a2+ab+b2.2.分解因式:(1)x2+12x+36;(2)-2xy-x2-y2;(3)a2+2a+1;(4)4x2-4x+1;(5)ax2+2a2x+a3;(6)-3x2+6xy-3y2.再见
此文档下载收益归作者所有