资源描述:
《哈工大研究生数值分析试题及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、321.x3,2分别是方程xx8x120的根;讨论用Newton迭代法求它们近似值的收敛阶。取初值x2计算根x3的近似值,要求迭代3次。(结果保留4位小数)032解:设f(x)xx8x122f(x)3x2x8f(x)6x2f(3)0,f(3)0,f(2)0,f(2)0,f(2)100则:3是f(x)0的单根,故Newton迭代在3附近是平方收敛;2是f(x)0的二重根,故Newton迭代在2附近是线性收敛;取x2,Newton迭代:032f(x)xx8
2、x12nnnnxxxn1nn2f(x)3x2x8n22x3x6nn3x4n22x3x600x13x4022x3x611x23x4122x3x622x33x422.设常数a0,求出a的取值范围使得解方程组a21xb112a3xb2213axb33的Jacobi迭代法收敛。解:Jacobi迭代:(k1)(k)xBxgJ1a0210211Ba203203Ja
3、a1301301ab1gab2ab3迭代矩阵B的特征方程:J021a2111EB2032a30Jaa13013a3即:(a)14(a)014特征根:0,ia14谱半径:(B)1时Jacobi迭代收敛Ja故:a14232x153.设(1)用Crout三角分解法求解方程组1034x13;2361x93(2)
4、用乘幂法求方程组系数阵的按摸最大的特征值和对应的特征向量。T(取v(0,0,1),计算迭代三次的值)0解:(1)Crout三角分解:311232221A103410121LU23613113124311221L1012,U123113124LybAxbUxyT5求解Lyb得y,1,02T求解Uxy得x1,1,0v(0,0,1)T,
5、v0T(2)0u00,0,11max(v)0Tv1Tv1Au02,4,1,u10.5,1,0.254max(v)1Tv2Tv2Au1,,,u20.5,1,0.86119max(v)2Tv3Tv3Au2,,,u30.5,1,0.7306,11.44max(v)34.试利用插值多项式证明:对k0,1,,n2恒有等式nki0i1(i1)(ii1)(ii1)(in)证明:设xi,i1,2,,nikf(x)x,k0,1,n2由插值多
6、项式的唯一性,比较Lagrange与Newton插值最高项系数得:nf(x)if[x1,,xn]i1(xix1)(xixi1)(xixi1)(xixn)由差商与导数关系,有(n1)f()f[x,,x],[1,n]1n(n1)!k将xi,(i1,2,,n),f(x)x,(k0,1,n2)代入上面两等式,有inki0i1(i1)(ii1)(ii1)(in)nk(n1)if()f[x1,,xn]0i1(i1)(ii1)(ii1)(in)
7、(n1)!5.求4次Hermit插值多项式H(x),满足:H(0)H(0)0,H(1)H(1)1,H(2)1并写出误差表达式。22解:方法一:因H(0)H(0)0,故设:H(x)x(abxcx)由H(1)H(1)1,H(2)1,得abc12a3b4c1a2b4c1931得a,b,c424122H(x)x(x3)4(5)f()22误差:E(x)f(x)H(x)x(x1)(x2),(0,2)5!方法一:满足H(0)0,H(1)H(2)1的插值
8、多项式为:312p(x)xx222设:H(x)p(x)(ABx)(x0)(x1)(x2)23H(0)2B0,2由1H(1)(AB)1213得:由A,B44311H(x)xx(