欢迎来到天天文库
浏览记录
ID:5395240
大小:911.50 KB
页数:42页
时间:2017-11-09
《第6章 大气中的准地转运动》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第六章大气中的准地转运动对中高纬自由大气大尺度运动,其运动方程的零级简化形式为地转平衡关系,即实际水平风场接近地转风场。但是,这种平衡关系只是一种近似关系,事实上经常存在地转偏差,即实际风场与地转风场存在差别。尽管地转偏差经常存在,但其并不会无限增长。这意示着大气运动的过程是一种准地转运动过程:既包含由地转平衡状态向非平衡状态的演变,即地转平衡的破坏过程(演变过程),又包含着由非平衡过程向新的地转平衡调整的过程(适应过程)。因此大气运动是地转平衡的破坏又不断建立的过程,也是一连串的风场和气压场在不断变化和相互适应
2、调整的准地转运动过程。(本章的主要内容:自由大气中风场和气压场之间的相互适应调整过程的特征、物理机制等)§6.1地转偏差1地转偏差的定义和性质地转偏差:是指某空间点实际的水平风矢量与该点的地转风矢量之差。自由大气的水平运动方程可写成:地转偏差的性质:1)在北半球,地转偏差(风)的方向与空气微团的水平加速度的方向垂直并指向其左侧。2)地转偏差(风)的大小与空气微团的水平加速度的大小成正比,与科氏参数f或纬度成反比。2地转偏差对天气演变的意义地转偏差对动能制造的贡献用点乘水平运动方程:地转偏差与动能的变化动能增加动
3、能减少2)地转偏差对垂直运动的贡献P坐标系的连续方程为若取下边界条件:如果不存在地转偏差,则不存在水平风场得辐合辐散,也就没有垂直运动。3决定地转偏差的因子风场的非定常性引起的偏差风风速的水平平流引起的偏差风对流变化引起的偏差风(1)变压风:?变高场与地转偏差(1)沿流线方向的风速的不均匀性造成的风速水平平流(或辐散辐合)而引起的横向(与方向垂直)的偏差风(称为横辐散风)。(2)横辐散和纵辐散风:12推导?当地转风沿流线方向增大时,则由此引起的地转偏差风指向地转风的左侧(左图);当地转风沿流线方向减小时,则由此引
4、起的地转偏差风指向地转风的右侧(右图)横辐散偏差风(2)纵辐散风(3)风的对流变化引起的地转偏差--热成偏差风纵辐散辐合偏差风槽前脊后的区域是地转偏差风的纵辐散区,而在脊前槽后区域则是地转偏差风的纵辐合区。热成偏差风与大气的斜压性和垂直运动有关:当有上升运动时,与方向相反;当有下沉运动时,与方向相同,如出现暖(冷)中心区,则偏差风矢量由四周(中心)指向中心(四周)。§6.2地转适应理论概要1、适应过程和演变过程的基本概念:准地转过程演变过程(发展过程)由动力平衡向动力不平衡过渡的过程,属于平衡中的运动过程。适应过
5、程(调整过程)由动力不平衡向新的动力平衡过渡的过程,属于运动中的平衡过程。2、适应过程与演变过程的可分性1)时间尺度上的可分性P坐标系大尺度水平运动方程一级简化可写为:其中为地转偏差风纬向和经向分量。引入无量纲变量:下标“1”的量为无量纲量。将上式各量代入水平运动方程,并用除各式,得:,,其中:对于大尺度运动,~10-1<1,;而对于不同过程,和c参数和可以变化较大。所以下面分别讨论两种过程的时间尺度。(1)演变过程。在演变过程中,一般地转偏差较小,于是基别尔数陈秋士数Rossby数于是包含和的项为方程中的两个
6、大项。由于在一般情况下,有,故:因此,准地转过程的演变过程相对于适应过程是一种慢过程。(2)适应过程。在适应调整阶段,大气存在较明显的地转偏差,即地转偏差较大,可以假设:且局地变化项与地转偏差项量级最大并相当,即因此:故大气的适应调整过程是一种相对较快的过程。2)物理性质可分(1)在演变过程中,由于地转偏差较小,非线性项的量级较大,演变过程是非线性的;而在适应过程,由于地转偏差较大,水平运动方程中的线性项量级较大,故适应过程是准线性的。(2)对演变过程而言,,即,所以演变过程以准涡旋运动为主;在适应过程,,即,说
7、明大气运动以位势运动(辐散辐合运动)为主。由于适应调整过程较演变过程快,即由动力不平衡向新的动力平衡恢复过程较快,这就可以解释为什么在每日的天气图上可以在中高纬地区看到准地转流场。3正压地转适应过程为简单起见,本节同样以正压大气为模型来讨论大气中地转适应过程,以揭示其物理机制。1)均质大气模式假定空气密度为常数(均质大气),无摩擦,且自由面上的气压为常数。对静力平衡方程进行z从zh的积分,得对上式分别求x,y的偏导数有:均质大气模式由于h与z无关,故由上述两式可知,水平气压梯度力也与z无关。在这种意义上,我们称
8、这种均质大气模式为正压模式。这表明如果初始时,u,v与z无关,则此后的u,v也与z无关。均质大气的连续方程为:对上式作z从0h的垂直积分,并注意,得即或改写为:(=gh)W随z变吗?均质大气模式的基本方程组:2)地转适应方程组对于适应过程,非线性项可以看作相对小的项而忽略,支配方程组可表示为:其中:H为自由面静止高度3)适应过程的物理机制以一维情况为例,设扰动与y无关
此文档下载收益归作者所有