资源描述:
《自编的三次样条插值matlab程序(含多种边界条件).pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、数值计算第二次大作业——验证三次样条函数插值是否有几何不变性(1)给定的插值条件如下:i01234567Xi8.1258.49.09.4859.69.95910.1710.2Yi0.07740.0990.280.600.7081.2001.8002.177端点边界条件为第一类边界条件(给定一阶导数):'Y0.010870'Y1007三次样条函数的构造过程如下:设xxxxx共n个插值节点,则经过数据点xy,,xy,,,xy,123n1n1122nn的三次样条Sx是一组三次多项式:23Sx1a1bxx11cxx11dxx1
2、1,xxx1,2,23S2xa2bxx22c2xx2d2xx2,xxx2,3,(1.1)23Sn1xan1bn1xxn1cn1xxn1dn1xxn1,xxn1,xn由节点处的连续性可知:SxiiySxi,ii1yi1,i1,2,n1.ayi,1,2,n1.ii23y2y1bx12x1cx12x1dx12x1,(1.2)23ynyn1bn1xnxn1cn1xnxn1d
3、n1xnxn1由节点处的一阶与二阶光滑性可知:''""Si1xiSxii,Si1xiSxii,i1,2,,.n''20Sx12S2x2b12cx12x13dx12x1b2''20Sn2xn1Sn1xn1bn22cn2xn1xn23dn2xn1xn2bn1(1.3)""0S1x2S2x22c16dx12x12c20S"xS"x2c6dxx2cn2n1n1n1n2n2n1n2n
4、1"又设cSx2,记xx,yyi,1,2,,n1,则由(1.3)可得:nn1nii1iii1icci1id,i1,2,,n1.(1.4)i3ii2ii从(1.2)解得:bcd2cc,i1,2,,n1.(1.5)iiiiiii13ii将(1.4)与(1.5)代入(1.3)得:2111c212c223c3,21(1.6)c2cc3n1n2n2n2n2n1n1n1nn1n2""增加两个端点
5、边界条件,因为2cSx,2cSx,故有:111nn1n1.第零类边界条件:自然样条,c0,c0.1n''2.第一类边界条件:给定端点一阶导数,设SxvS,xv,则有:111n1nn211c12c311v1n1cn12n1cn3vnn1n1""3.第二类边界条件:给定端点二阶导数,设SxvS,xv,则有:111n1nn2cv112cvnncci1iii结合(1.6)及所给的边界条件即可解出c,而d,b2cc,故iiiii133ii可得到最终各个子区间
6、上的三次样条函数。根据以上过程进行matlab编程,编写三次样条spline3函数,具体见附录。因此所编函数可对第一题求解:clear;clc;formatshortg;x1=[8.1258.499.4859.69.95910.16610.2]';y1=[0.07740.0990.280.60.7081.21.82.177]';u1=0.01087;un=100;xx1=[x1(1):0.001:x1(end)]';[yy1b1c1d1]=spline3(x1,y1,xx1,1,u1,un);fprintf('ttb1ttc1ttd1');disp([b1c1(1:end
7、-1,1)d1]);plot(x1,y1,'bo',xx1,yy1,'--k');gridon;b1c1d10.010870.144890.3680.174050.4485-0.3930.2878-0.258912.11531.52942.8188-69.141-0.56548-21.03573.61412.79458.247-512.32-28.949-259.942279332.52.5221.51.5110.50.50808.