欢迎来到天天文库
浏览记录
ID:53877496
大小:2.15 MB
页数:24页
时间:2020-04-10
《辽宁省凌源二中2018届高三三校联考理数试题(解析版).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018届高三三校联考理数第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.【答案】D【解析】求解一元二次不等式可得:,求解指数不等式可得:,据此可得:,本题选择D选项.2.记复数的虚部为,已知复数(为虚数单位),则为()A.B.2C.D.3【答案】A【解析】由题意可得:,则.本题选择A选项.3.已知曲线在点处的切线的倾斜角为,则()A.B.C.2D.【答案】B【解析】【分析】根据导数的几何意义,求得
2、直线的斜率,即为倾斜角的正切值;结合同角三角函数关系式中齐次式的化简方法,即可得到最后的值.【详解】曲线,点的坐标为所以,在点处切线斜率,即所以分子分母同时除以可得所以选B【点睛】本题考查了导数的几何意义,三角函数式的化简求值,属于中档题.4.2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是()A.B
3、.C.D.【答案】A【解析】根据题意,可估计军旗的面积大约是.故选B.5.已知圆,当变化时,圆上的点与原点的最短距离是双曲线的离心率,则双曲线的渐近线方程为()A.B.C.D.【答案】C【解析】圆E的圆心到原点的距离,据此可得,当m=4时,圆上的点与原点的最短距离是,即双曲线的离心率为,据此可得:,双曲线()的渐近线为.本题选择C选项.6.已知数列为等比数列,且,则()A.B.C.D.【答案】B【解析】由等比数列性质可得:,,结合可得:,结合等比数列的性质可得:,即:本题选择B选项.7.执行如图的程序框图,若输
4、出的的值为,则①中应填()A.B.C.D.【答案】B【解析】由题意可得:,即时推出循环,则①中应填.本题选择C选项.8.已知函数为内的奇函数,且当时,,记,,,则间的大小关系是()A.B.C.D.【答案】C【解析】利用奇函数的性质可得:,即当时,函数的解析式为:,令,由函数的奇偶性的定义可得函数g(x)是定义域内的偶函数,且:,,即函数在区间上单调递减,且:,结合函数的单调性可得:.本题选择C选项.9.已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为()A.B.C.D.【答案】
5、D【解析】结合三视图可知,该几何体是一个半圆柱与一个底面是等腰直角三角形的三棱锥组成的组合体,其体积为:.本题选择D选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.10.已知函数()的部分图象如图所示,其中.即命题,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是()A.为真B.为假C.为真D.为真【答案】C【
6、解析】由可得:,解得:,结合可得:,结合可得:,函数的解析式为:,则命题p是真命题.将函数的图像上所有的点向右平移个单位,所得函数的解析式为:的图像,即命题q为假命题,则为假命题;为真命题;为真命题;为假命题.本题选择C选项.11.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为()A.B.C.D.【答案】D
7、【解析】抛物线方程中:令可得,即,结合抛物线的光学性质,AB经过焦点F,设执行AB的方程为,与抛物线方程联立可得:,据此可得:,且:,将代入可得,故,故,故△ABM的周长为,本题选择D选项.12.已知数列,的前项和分别为,,且,,,若恒成立,则的最小值为()A.B.C.49D.【答案】B【解析】【分析】先求得的通项公式,化简的表达式,利用裂项求和法求得,由此求得的最小值.【详解】当时,,解得.当时,由,得,两式相减并化简得,由于,所以,故是首项为,公差为的等差数列,所以.则,故,由于是单调递增数列,,.故的最小
8、值为,故选B.【点睛】本小题主要考查已知求,考查裂项求和法,考查数列的单调性,属于中档题.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知在中,,,若边的中点的坐标为,点的坐标为,则__________.【答案】1【解析】依题意,得,故是以为底边的等腰三角形,故,所以.所以.14.在的展开式中,含项的为,的展开式中含项的为,则的最大值为________
此文档下载收益归作者所有