2020年中考数学二轮复习重难题型突破类型一数式规律.doc

2020年中考数学二轮复习重难题型突破类型一数式规律.doc

ID:53850008

大小:145.50 KB

页数:8页

时间:2020-04-08

2020年中考数学二轮复习重难题型突破类型一数式规律.doc_第1页
2020年中考数学二轮复习重难题型突破类型一数式规律.doc_第2页
2020年中考数学二轮复习重难题型突破类型一数式规律.doc_第3页
2020年中考数学二轮复习重难题型突破类型一数式规律.doc_第4页
2020年中考数学二轮复习重难题型突破类型一数式规律.doc_第5页
资源描述:

《2020年中考数学二轮复习重难题型突破类型一数式规律.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、类型一数式规律1、数列型数字问题例1、有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为_________.【答案】:50【解析】:仔细观察这一数列中的各个数字的构成特点,不难发现如下;第一个数是1,第二个数数1+1,第三个数是1+1+3,第四个数是1+1+3+5,第五个数是1+1+3+5+7,第六个数是1+1+3+5+7+9,为了使规律凸显的明显,我们不妨把第一个数1也写成两个数的和的形式,为1+0,这样,就发现数字1是固定不变的,规律就蕴藏在新数列0,1,4,9,16中,而0,1,4,9,

2、16这些数都是完全平方数,并且底数恰好等于这个数字对应的序号与1的差,即1=1+(1-1)2,2=1+(2-1)2,5=1+(3-1)2,10=1+(4-1)2,17=1+(5-1)2,26=1+(5-1)2,这样,第n个数为1+(n-1)2,找到数列变化的一般规律后,就很容易求得任何一个序号的数字了。因此,第八个数就是当n=8时,代数式1+(n-1)2的值,此时,代数式1+(n-1)2的值为1+(8-1)2=50。所以,本空填50。例2、古希腊数学家把1,3,6,10,15,21,……,叫做三角形数,根据它的规律,则第100个三角形数与第

3、98个三角形数的差为_________.【答案】:199【解析】:本题中数列的数字,不容易发现其变化的规律。我们不妨利用函数的思想去试一试。当序号为1时,对应的值是1,有序号和对应的数值构成的点设为A,则A(1,1);当序号为2时,对应的值是3,有序号和对应的数值构成的点设为B,则B(2,3);当序号为3时,对应的值是6,有序号和对应的数值构成的点设为C,则C(3,6);因为,,,所以有:成立,所以,对应的数值y是序号n的二次函数,因此,我们不妨设y=an2+bn+c,把A(1,1),B(2,3),C(3,6)分别代入y=an2+bn+c中

4、,8得:a+b+c=1,4a+2b+c=3,9a+3b+c=6,解得:a=,b=,c=0,所以,y=n2+n,因此,当n=100时,y=×1002+×100,当n=98时,y=×982+×98,因此(×1002+×100)-(×982+×98)=199,所以该空应该填199。2、图示型数字问题例3、为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆个“金鱼”需用火柴棒的根数为() A.B.C. D.【答案】:A【解析】:第一个图需要火柴的根数是8,有序号和对应的数值构成的点设为A,则A(1,8);第二个图

5、需要火柴的根数是14,有序号和对应的数值构成的点设为B,则B(2,14);第三个图需要火柴的根数是20,有序号和对应的数值构成的点设为C,则C(3,20);因为,,,所以有:成立,所以,每个图形中所需要的火柴的总根数y是这个图形的序号n的一次函数,因此,我们不妨设y=kn+b,把A(1,8),B(2,14)分别代入y=kn+b中得:k+b=8,2k+b=14,解得:k=6,b=2,所以,y=6n+2。因此选A。例4、下列图案是由边长为单位长度的小正方形按一定的规律拼接而成。依此规律,第5个图案中小正方形的个数为_______________

6、。【答案】:50【解析】:8仔细观察第一个图,正方形的个数为1,第二个图形中正方形的特点是中间是3个,左右两边各一个,即为1+3+1个,第三个图形中正方形的特点是中间是5个,左右分别是1+3个,即为1+3+5+3+1,分析到这里,相信你一定想到了这里面的变化规律了吧。是的,第n个图形中正方形的个数为1+3+5++(2n-1)++5+3+1=2n2-2n+1,这样,第5个图形中正方形的个数,也就是当n=5时,代数式2n2-2n+1的值,所以,代数式的值为:2n2-2n+1=2×52-2×5+1=41个。所以,本空填50。例5、按如下规律摆放三

7、角形:则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________.【答案】:14,3n+2【解析】:仔细观察第一个图形,三角形排列的特点是中间3=(1+2)个,左右各1个,即图1中三角形的总数为1+(1+2)+1,第二个图形中三角形形的特点是中间是4=(2+2)个,左右两边各2个,即为2+(2+2)+2个,第三个图形中三角形的特点是中间是5=(3+2)个,左右分别是3个,即为3+(3+2)+3,分析到这里,相信你一定想到了这里面的变化规律了吧。是的,第n个图形中三角形的个数为n+(n+2)+n=

8、3n+2,这样,第4个图形中三角形正方形的个数,也就是当n=4时,代数式3n+2的值,所以,代数式的值为:3n+2=3×4+2=14个。所以,本题的两个空分别填14和3n+2。例

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。