资源描述:
《圆的性质练习题.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆的性质练习题1.判断下列命题是否正确。(1)平分一条直径的弦必垂直于这条直径(2)平分一条弧的直线垂直于这条弧所对的弦(3)弦的垂线必过这条弦所在圆的圆心(4)长度相等的两条弧是等弧 (5)过弦的中点的直线平分弦所对的弧 (6)直径是弦,并且是圆中最长的弦(7)弦所对的两条弧的中点连线垂直平分弦,且过圆心(8)相等的圆心角所对的弧相等 (9)弦的垂直平分线经过圆心(10)平分弦的直径垂直于弦(11)圆的对称轴是直径(12)经过圆心的每一条直线都是圆的对称轴(13)在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心2、⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则O
2、M的长的取值范围是()(A)(B)(C)(D)3、过⊙O内一点P的最长弦为10cm,最短的弦为6cm,则OP的长为.4.已知⊙O的半径为2cm,弦AB长cm,则这条弦的中点到弦所对劣弧的中点的距离为___.5、圆的弦与直径相交成30°角,并且分直径为6cm和4cm两部分,则弦心距为________.6、如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB,AC于点D,E.连接DE,已知DE=EC.下列结论:①BC=2DE;②BD+CE=2DE.其中一定正确的有( )7、.一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB
3、=45°,则这个人工湖的直径AD为________.8、.如图AB是⊙O的直径,AC^所对的圆心角为60°,BE^所对的圆心角为20°,且∠AFC=∠BFD,∠AGD=∠BGE,则∠FDG的度数为________.9.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠C=40°,则∠ABD的度数为______.6题图 7题 8题 9题 10.如图,等边三角形ABC的三个顶点都在⊙O上,D是上任一点(不与A、C重合),则∠ADC的度数是________.毛(10)(11)(12)(13)11.如图,A、B、C为⊙O上三点,若∠OAB=
4、46°,则∠ACB=_______度.12.如图,AB是⊙O的直径,,∠A=25°,则∠BOD的度数为________.13.如图,AB是半圆O的直径,AC=AD,OC=2,∠CAB=30°,则点O到CD的距离OE=______.14.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是________.15、在半径为的圆内有两条互相平行的弦,弦长分别为、,求这两条弦之间的距离。16、在直径为52cm的圆柱形油槽内装入一些油后,,如果油面宽度是48cm,求油的最大深度。17.如图9,D是的中点,则图中与∠ABD相等的角的个数是()A.4个B.3个C.2个D.1个18如
5、图10,∠AOB=100°,则∠A+∠B等于()A.100°B.80°C.50°D.40°19.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.20、如图,已知在⊙中,弦,且,垂足为,于,于.(1)求证:四边形是正方形.(2)若,,求圆心到弦和的距离.21.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC=∠CAD,求弦AC的长.22.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系,并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB
6、有什么数量关系?请证明你的结论.23、如图,在两个同心圆中,大圆的弦AB,交小圆于C、D两点,设大圆和小圆的半径分别为.求证:.24、已知:⊙O的半径,弦AB、AC的长分别是、.求的度数。