欢迎来到天天文库
浏览记录
ID:53804531
大小:278.00 KB
页数:6页
时间:2020-04-07
《量子力学I期末考题(A)参考答案.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、山东师范大学2014年期末考试试题(A)答案及评分标准(时间:120分钟共100分)课程编号:080910203课程名称:量子力学适用年级:2011学制:四年适用专业:物理学、光电试题类别:A一、简答题:(本题共5小题,每小题5分,共25分)1、在体系所处的某一个状态中测量不同的力学量,其测值概率分布是否相同?试举例说明。答:在体系所处的状态中测量不同的力学量其测值概率分布是不一样的。(2分)比如某状态中测量出的坐标概率分布与动量概率分布可用不同函数来表示。(3分)(给出其它合适的例子同样给分)2、试讨论:若两算符对易,
2、是否在所有态下它们都同时有确定值。答:对易算符可以有共同的本征态,在共同本征态下它们同时取确定值。(3分)但若所给定的态不是它们的共同本征态,在此态下两算符是不能同时取确定值的。比如是的本征态,尽管,但它不是的本征态。(2分)(不给例子,讨论合适也给分)3、试述全同粒子的特点以及对波函数的要求。答:全同粒子的特点:任意交换两个粒子的位置不影响体系的状态。(3分)这个特点要求描述全同粒子的波函数对任意两个粒子的交换要么是对称的,要么是反对称的。(2分)4、使用狄拉克符号导出能量本征值方程在动量表象中的表示。答:在坐标表象下
3、的能量本征值方程为(1分)方程两边取动量表象,有(1分)令,并加入完备性关系,并利用动量算符属于本征值p的本征函数,有(1分)即(2分)(从松处理,如果写的是含时薛定谔方程的动量表象,只扣1分)5、以和分别表示自旋向上和自旋向下的归一化波函数,写出两电子体系的自旋单态和自旋三重态波函数(只写自旋部分波函数)。6/6答:自旋三重态三个:(3分)自旋单重态一个:(2分)(后面两个写得正确,给3分)二、证明题(本题共3小题,每小题10分,共30分)1、证明在定态下,任意不显含时间t力学量A的取值概率分布不随时间改变。证明:设在
4、定态下,不显含时间的力学量A属于本征值ak的本征函数为,则有(2分)(2分)两边同作内积,有(2分)即(2分)所以取值ak的概率分布是,显然不随时间改变。(2分)(用对时间求导的方法做,推证正确,不扣分)2、已知在坐标表象下动量算符属于本征值p的本征函数为,试证明表象中算符的矩阵元是。证明:根据题意,有(2分)(2分)(2分)6/6(2分)利用函数的定义,有。(2分)3、证明在氢原子的任何定态中,动能的平均值等于该定态能量的负值,即。证明:根据位力定理,对于库仑势场,(2分)对于氢原子来说,由哈密顿的表达式两边取平均值,
5、有(4分)前式代入,得(2分)即(2分)三、计算题(本题共3小题,每小题15分,共45分)1、已知在表象中,,求:(1)的本征值和所属本征函数;(2)表象到表象的变换矩阵(即将对角化的变换矩阵)。解:(1)令本征值为,相应的本征矢为,则有,令,得(2分)解久期方程得(2分)将代入本征值方程可得,利用归一化条件可得(2分)6/6同理对于,归一化本征函数(2分)以上俩本征矢量分别隶属于的本征值。(1分)按照本征值次序排列本征矢量,得变换矩阵(3分)利用此变换矩阵可以将变换到自身表象从而实现对角化:(3分)(如果只对求本征值和
6、本征函数,不扣分)2、设有一个定域电子,受到沿方向均匀磁场的作用,Hamiltonian量(不考虑轨道运动)表为。设时电子自旋“向上”(),求时的平均值。解:在表象下写出哈密顿算符的矩阵形式为(1分)其本征值和相应的本征函数为(令)及(3分)则任意t时刻的态矢可以写为显然在t=0时,利用初始条件有(2分)所以可得出(2分)于是(3分)6/6所以(4分)3、一维无限深势阱中的粒子受到微扰的作用,其中A为常数。求第一激发态能量的二级近似与波函数的一级近似。解:利用非简并微扰中激发态能量的二级近似与波函数的一级近似公式(2分)
7、式中(2分)但(3分)所以(3分)对于波函数,当0
此文档下载收益归作者所有