回归分析的基本思想及其初步应用(1).ppt

回归分析的基本思想及其初步应用(1).ppt

ID:53772122

大小:1.86 MB

页数:34页

时间:2020-04-26

回归分析的基本思想及其初步应用(1).ppt_第1页
回归分析的基本思想及其初步应用(1).ppt_第2页
回归分析的基本思想及其初步应用(1).ppt_第3页
回归分析的基本思想及其初步应用(1).ppt_第4页
回归分析的基本思想及其初步应用(1).ppt_第5页
资源描述:

《回归分析的基本思想及其初步应用(1).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2021/9/20郑平正制作3.1回归分析的基本思想及其初步应用(一)必修3(第二章统计)知识结构收集数据(随机抽样)整理、分析数据估计、推断简单随机抽样分层抽样系统抽样用样本估计总体变量间的相关关系用样本的频率分布估计总体分布用样本数字特征估计总体数字特征线性回归分析比《数学3》中“回归”增加的内容数学3——统计画散点图了解最小二乘法的思想求回归直线方程y=bx+a用回归直线方程解决应用问题选修2-3——统计案例引入线性回归模型y=bx+a+e了解模型中随机误差项e产生的原因了解相关指数R2和模型拟合的效果之间的关系了解

2、残差图的作用利用线性回归模型解决一类非线性回归问题正确理解分析方法与结果回归分析的基本思想及其初步应用知识回顾:对具有线性相关关系的两个变量进行回归分析的步骤是什么?(1)画出两个变量的散点图(相关关系)(2)求回归直线方程(公式法、)(3)利用回归直线方程进行预报回归直线过样本点的中心相关系数的计算公式:相关系数r的作用:1、判断正、负相关当r>0时,两个变量正相关当r<0时,两个变量负相关2、判断线性相关的强弱当0.75≤

3、r

4、≤1时,两个变量相关性很强当0.3≤

5、r

6、<0.75时,两个变量相关性一般当0≤

7、r

8、≤0.

9、25时,两个变量相关性较弱正相关负相关例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重(1)画散点图例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg485750

10、5464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重(2)建立回归方程例1从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为172cm的女大学生的体重。案例1:女大学生的身高与体重(3)相关系数的计算与解释探究:身高为172cm的女大学生的体

11、重一定是60.316kg吗?如果不是,你能解析一下原因吗?我们可以用下面的线性回归模型来表示:y=bx+a+e,(3)其中a和b为模型的未知参数,e称为随机误差。y=bx+a+e,E(e)=0,D(e)=(4)在线性回归模型(4)中,随机误差e的方差越小,通过回归直线(5)预报真实值y的精度越高。随机误差是引起预报值与真实值y之间的误差的原因之一,其大小取决于随机误差的方差。另一方面,由于公式(1)和(2)中和为截距和斜率的估计值,它们与真实值a和b之间也存在误差,这种误差是引起预报值与真实值y之间误差的另一个原因。思考:

12、产生随机误差项e的原因是什么?随机误差e的来源(可以推广到一般):1、忽略了其它因素的影响:影响身高y的因素不只是体重x,可能还包括遗传基因、饮食习惯、生长环境等因素;2、用线性回归模型近似真实模型所引起的误差;3、身高y的观测误差。以上三项误差越小,说明我们的回归模型的拟合效果越好。函数模型与回归模型之间的差别函数模型:回归模型:可以提供选择模型的准则函数模型与回归模型之间的差别函数模型:回归模型:线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化

13、。在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。所以,对于身高为172cm的女大学生,由回归方程可以预报其体重为思考:如何刻画预报变量(体重)的变化?这个变化在多大程度上与解析变量(身高)有关?在多大程度上与随机误差有关?假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值,即8个人的体重都为54.5kg。54.554.554.554.554.554.554.554.5体重/kg170155165175170157165

14、165身高/cm87654321编号54.5kg在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值受解析变量(身高)或随机误差的影响。怎样研究随机误差5943616454505748体重/kg170155165175170157165165身高/cm8

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。