闭口薄壁杆件的约束扭转剪应力分析

闭口薄壁杆件的约束扭转剪应力分析

ID:5374851

大小:216.62 KB

页数:4页

时间:2017-12-08

闭口薄壁杆件的约束扭转剪应力分析_第1页
闭口薄壁杆件的约束扭转剪应力分析_第2页
闭口薄壁杆件的约束扭转剪应力分析_第3页
闭口薄壁杆件的约束扭转剪应力分析_第4页
资源描述:

《闭口薄壁杆件的约束扭转剪应力分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、万方数据第27卷第4期2008年8月兰州交通大学学报JournaloflainzhouJiaotongUniversityV01.27No.4Aug.2008文章编号:1001—4373(2008)04--0001—03闭口薄壁杆件的约束扭转剪应力分析张元海(兰州交通大学土木工程学院,甘肃兰州730070)摘要:基于周边不变形理论,推导了闭口薄壁杆件的约束扭转剪应力计算公式,对有关文献中的另一种剪应力公式进行了分析与论证,发现这些文献中对闭口薄壁杆件约束扭转时的纯扭转剪应力和约束扭转剪应力的表达是不正确的,并进行了更正.最后通过一个发生约束扭转的悬臂箱梁算例,具体分析比较了按本文公式和有

2、关文献中公式计算的约束扭转剪应力的差别.关键词:闲口薄壁杆件;约束扭转;剪应力中图分类号:TU338文献标识码:A0引言闭口薄壁杆件由于具有多方面的优越性,因而在土木工程结构中得到广泛应用.多年来,人们对闭口薄壁杆件的分析理论进行了大量研究工作,建立了较为完整的工程应用分析理论.在闭口薄壁杆件的约束扭转分析方面,前苏联学者乌曼斯基提出的第二理论在工程计算中应用较多.在基于该理论对闭口薄壁杆件约束扭转分析的剪应力计算方面,一些文献中给出了不同的表达式,但是在区分相应于自由扭转和约束扭转的剪应力方面存在疏漏.本文的目的在于澄清闭口薄壁杆件约束扭转分析中的剪应力计算问题,指出有关文献中的不正确

3、表达,并进行更正.I约束扭转剪应力计算闭口薄壁杆件发生约束扭转时,由于纵向翘曲位移不能自由发生,在杆件横截面上将产生约束扭转正应力氏(z,s)(z为沿杆轴方向的坐标,s为杆件横截面上沿周边方向的坐标,为表达方便起见,下文不再标出2,s),相应地,会产生约束扭转剪应力乙,它与壁厚t的乘积常称为约束扭转剪流弓。,亦即毛一巩/t.从中面微元体的纵向平衡条件可得⋯:纽一一挚£(1)3saz’⋯%:一警s。(3)惯性矩;s为扇性静面矩,即&一l3西出,其中。为续性条件‘¨:令丸出=o,亦即步d汴o(4)‰,进而可得约束扭转剪应力为每t一眯Ij簧1(5,2对另一种剪应力公式的分析收稿日期:2007-

4、l卜28基金项目:I

5、.肃省I:1然科学基金(32ks042一B25—032);叶肃省高等学校研究生导师科研项目(080一卜09)}兰州交通大学“青脏”人才I:程照金(QI,一2A—16)作者简介:张,二海(1965一),男,”肃武111人,教授.博lj.万方数据2兰州交通大学学报第27卷约束扭转剪应力It,r,采用了另一种分桫r途径,即在微元体纵向平衡方程基础上,不是通过翘IIII连续性条件而是由扭矩平衡条件导出总剪流表达式如下(用Mk表示截面总扭矩);=訾+矽(&一苗即ds)(6)并据此认为,相应于自由扭转和约束扭转的剪流分别为弓,:警,(7)孔一秽(&一彭S,,pds)(8)上述结

6、果显然是不正确的.式(6)事实上只是一个由扭矩平衡条件得到的总剪流表达式(不难验证,用该式表达的总剪流合成的扭矩为截面总扭矩Mi),式(6)等号右边两项并非分别为相应于自由扭转和约束扭转的剪流,亦即式(7,8)并不成立.若把式(6)改写为(用M:表示自由扭转扭矩)蚕=鲁+警+矽(£一苗即ds)(9)则式(9)等号右边第一项才是自由扭转剪流弓。,其余两项才是约束扭转翘曲剪流孔,即孔一鲁+矽(£一苗即出)(10)现在证明式(10)与式(5)等价.由于约束扭转时的翘曲扭矩为舰一一E/∥,故式(10)可写为孔一郫。一等(L+爹即∽(11)闭口薄壁杆件的广义扇性坐标为。一f础一悬f宇㈣,yo式(1

7、2)两边对s微分后,可得:脚s一山+≠象宇(13)y7借助式(13),可将式(11)中的积分表达为灿=舴∽f甜舞牛·眦她)函+甜&字⋯)y7由分部积分法知,上式右边第一个积分结果为'-爹(flgsds)幽=一M她]:l一步祈ds=“爹滩一¨拶£字m,净訾[&一箨]㈣,3算例分析选取一个发生约束扭转的悬臂箱梁算例,分别按本文推导的约束扭转剪应力公式与文献[2~6]中的相应公式对固定端横截面上的约束扭转剪应力进行计算.图1所示为一悬臂箱梁,梁长z一1m,横截面宽度口=0.4ITI,高度b一0.3ITI,壁厚t一0.01rn,材料弹性模量为E一2.06×105MPa,泊松比户一0.3.在自由端

8、作用集中扭矩Ml=1kN·m,方向如图l所示.图1悬臂箱梁简图Fig.1Diagramofcantileverboxgirder用笔者编制的薄壁箱梁程序BOXBP对该悬臂箱梁进行计算分析,求得广义扇性惯性矩为L=8.57l×10qm6,抗扭惯性矩为Jd=4.114×10一4m4;固定端的自由扭转扭矩M:和约束扭转翘曲扭矩舰分别为:舰=0.98kN·m,舰=0.02kN·肌图2中一并画出了按本文剪应力公式和文献[2~6]中相应公式计算

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。