向量及向量的基本运算方法.doc

向量及向量的基本运算方法.doc

ID:53670187

大小:857.50 KB

页数:6页

时间:2020-04-05

向量及向量的基本运算方法.doc_第1页
向量及向量的基本运算方法.doc_第2页
向量及向量的基本运算方法.doc_第3页
向量及向量的基本运算方法.doc_第4页
向量及向量的基本运算方法.doc_第5页
资源描述:

《向量及向量的基本运算方法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、l向量及向量的基本运算一、教学目标:1.理解向量的有关概念,掌握向量的加法与减法、实数与向量的积、向量的数量积及其运算法则,理解向量共线的充要条件.2.会用向量的代数运算法则、三角形法则、平行四边形法则解决有关问题.不断培养并深化用数形结合的思想方法解题的自觉意识.二、教学重点:向量的概念和向量的加法和减法法则.三、教学过程:(一)主要知识:1)向量的有关概念①向量:既有大小又有方向的量。向量一般用……来表示,或用有向线段的起点与终点的大写字母表示,如:。向量的大小即向量的模(长度),记作

2、

3、。②零向量:长度为0的向量,记为,其方向是任意的,

4、与任意向量平行。<注意与0的区别>③单位向量:模为1个单位长度的向量。④平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上。相反向量:我们把与向量长度相等,方向相反的向量叫做的相反向量。记作-。⑤相等向量:长度相等且方向相同的向量。相等向量经过平移后总可以重合,记为。2)向量加法①求两个向量和的运算叫做向量的加法。设,则+==。向量加法有“三角形法则”与“平行四边形法则”。说明:(1);(2)向量加法满足交换律与结合律;3)向量的减法①相反向量:与长度相等、方向相反的向量,叫做的相反向量。记作,零向量的相反向

5、量仍是零向量。关于相反向量有:(i)=;(ii)+()=()+=;(iii)若、是互为相反向量,则=,=,+=。②向量减法:向量加上的相反向量叫做与的差,记作:。求两个向量差的运算,叫做向量的减法。的作图法:可以表示为从的终点指向的终点的向量(、有共同起点)。注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2)三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向

6、被减向量的终点。4)实数与向量的积①实数λ与向量的积是一个向量,记作λ,它的长度与方向规定如下:(Ⅰ);(Ⅱ)当时,λ的方向与的方向相同;当时,λ的方向与的方向相反;当时,,方向是任意的。②数乘向量满足交换律、结合律与分配律。实数与向量的积的运算律:设λ、μ为实数,则①λ(μ)=(λμ)②(λ+μ)=λ+μ③λ(+)=λ+λ5)两个向量共线定理向量与非零向量共线有且只有一个实数,使得=。6)平面向量的基本定理如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:其中不共线的向量叫做表示这一平面内所有向量的一组基底。

7、7)特别注意:(1)向量的加法与减法是互逆运算。(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件。(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况。(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关。(二)主要方法:1.充分理解向量的概念和向量的表示;2.数形结合的方法的应用;3.用基底向量表示任一向量唯一性;4.向量的特例和单位向量,要考虑周全.(三)例题分析:例1、判断下列各命题是否正确(1)零向量没有方向(2)若(3)单位向量都相等(4)向量就

8、是有向线段(5)两相等向量若共起点,则终点也相同(6)若,,则;(7)若,,则(8)若四边形ABCD是平行四边形,则(9)已知A(3,7),B(5,2),将按向量=(1,2)平移后得到的向量的坐标为(3,-3)(10)的充要条件是且;解:(1)不正确,零向量方向任意,(2)不正确,说明模相等,还有方向(3)不正确,单位向量的模为1,方向很多(4)不正确,有向线段是向量的一种表示形式(5)正确,(6)正确,向量相等有传递性(7)不正确,因若,则不共线的向量也有,。(8)不正确,如图(9)不正确,∵=(1,2),∴平移公式是,将A(3,7),B(

9、5,2)分别代入可求得,故=(6,4)-(4,9)=(2,-5)。(10)不正确,当,且方向相反时,即使,也不能得到;[点评]正确理解向量的有关概念例2、如图平行四边形ABCD的对角线OD,AB相交于点C,线段BC上有一点M满足BC=3BM,线段CD上有一点N满足CD=3CN,设解:.[点评]根据向量的几何加减法则,能对图形中的向量进行互相表示练习:△ABC中,用.如图解:例3、一条渔船距对岸4km,以2km/h的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8km,求河水的流速.解:设表示垂直于对岸的速度,表示水流速度,则为实际速度

10、航行时间为4km÷2km/h=2h在△ABC中所以,河水的流速为[点评]求合力或分力,合速或分速问题用向量解是一种常见问题,要善于运用平行四边形和三角形法则例4、在

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。