欢迎来到天天文库
浏览记录
ID:53449623
大小:114.50 KB
页数:3页
时间:2020-04-03
《(教学篇)整式的乘法知识点.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、整式:单项式和多项式统称为整式。整式和同类项1.单项式(1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。注意:数与字母之间是乘积关系。(2)单项式的系数:单项式中的字母因数叫做单项式的系数。如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。2.多项式(1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。(2)
2、单项式的次数:单项式中,次数最高的项的次数,就是这个多项式的次数。(3)多项式的排列:1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。在做多项式的排列的题时注意:(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是
3、这一项的一部分,一起移动。(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。b.确定按这个字母升幂排列,还是降幂排列。(3)同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。掌握同类项的概念时注意:1.判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同。②相同字母的次数也相同。2.同类项与系数无关,与字母排列的顺序也无关。3.几个常数项也是同类项。(4)合并同类项:1.合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。2.合并同类项的法则:同类项的系数相加,所得结果作
4、为系数,字母和字母是指数不变。3.合并同类项步骤:⑴.准确的找出同类项。⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。⑶.写出合并后的结果。在掌握合并同类项时注意:1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.2.不要漏掉不能合并的项。3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。合并同类项的关键:正确判断同类项。整式的乘法知识点(1)单项式的乘法单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含的字母,则连同它的指数作为积的一个因式。练习:(2)单项式与多项式相乘单项式与多项式相乘,就是
5、用单项式去乘多项式的每一项,再把所得的积相加。练习:(3)多项式与多项式相乘多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。练习:(3x-1)(4x+5)(-4x-y)(-5x+2y)(y-1)(y-2)(y-3)(3x2+2x+1)(2x2+3x-1)乘法公式(1)平方差公式两个数的和与这两个数的差的积,等于这两个数的平方差。用字母表示为(a+b)(a-b)=a-b(2)完全平方公式两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。用字母表示为(a+b)=a+2ab+b(a-b)=a-2ab+b经典例题例1计算(1
6、)(2)例2.化简求值1.已知,求的值。2.若,,求的值。3.,其中。4.已知,求的值。例4综合应用1.若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.3.若,,,求证:2b=a+c.4.若,求代数式的值6.若,则7.如果多项式是一个完全平方式,则m的值
此文档下载收益归作者所有