《数学建模思想方法大全及方法适用范围》

《数学建模思想方法大全及方法适用范围》

ID:5333291

大小:260.81 KB

页数:10页

时间:2017-12-08

《数学建模思想方法大全及方法适用范围》_第1页
《数学建模思想方法大全及方法适用范围》_第2页
《数学建模思想方法大全及方法适用范围》_第3页
《数学建模思想方法大全及方法适用范围》_第4页
《数学建模思想方法大全及方法适用范围》_第5页
资源描述:

《《数学建模思想方法大全及方法适用范围》》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数学中国国赛专题培训(一)《数学建模思想方法大全及方法适用范围》主讲人:厚积薄发(冰强,BruceJan)第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=uu=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。3、注意事项在做回归的时候,一定要注

2、意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)1.2聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的

3、书籍中查找到,这里不再阐述)选取m聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。这种模型的的特点是直观,容易理解。2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法1(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可

4、变法(8)利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。4、方法步骤(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(3)重新计算类间距离,得到衡量矩阵(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的分类。1.3数据分类1、方法概述数据分类是一种典型的有监督的机器学习方法,其目的是从一组已知类别的数据中发现分类模型,以预测新数据的未知类别

5、。这里需要说明的是:预测和分类是有区别的,预测是对数据的预测,而分类是类别的预测。2、分类方法:(1)神经网路(2)决策树(这里不再阐述,有兴趣的同学,可以参考数据挖掘和数据仓库相关书籍)3、注意事项神经网路适用于下列情况的分类:(1)数据量比较小,缺少足够的样本建立数学模型;(2)数据的结构难以用传统的统计方法来描述(3)分类模型难以表示为传统的统计模型神经网路的优点:分类准确度高,并行分布处理能力强,对噪声数据有较强的鲁棒性和容错能力,能够充分逼近复杂的非线性关系,具备联想记忆的功能等。神经网路缺点:需要大量的参数,不能观察中间学习过程,输出结果较难解释,会影响到结果的可信度

6、,需要较长的学习时间,当数据量较大的时候,学习速度会制约其应用。4、步骤(1)初始化全系数(2)输入训练样本(3)计算实际输出值(4)计算实际输出值和期望输出值之间的误差(5)用误差去修改权系数(6)判断是否满足终止条件,如果满足终止,否则进入第二步21.4判别分析1、概述其是基于已知类别的训练样本,对未知类别的样本判别的一种统计方法,也是一种有监督的学习方法,是分类的一个子方法!具体是:在研究已经过分类的样本基础上,根据某些判别分析方法建立判别式,然后对未知分类的样本进行分类!2、分类根据判别分析方法的不同,可分为下面几类:(1)距离判别法(2)Fisher判别法(3)Baye

7、s判别法(4)逐步判别法关于这几类的方法的介绍,大家可以参考《多元统计学》,其中比较常用的是bayes判别法和逐步判别法3、注意事项:判别分析主要针对的是有监督学习的分类问题。共有四种方法,这里重点注意其优缺点:(1)距离判别方法简单容易理解,但是它将总体等概率看待,没有差异性;(2)Bayes判别法有效地解决了距离判别法的不足,即:其考虑了先验概率——所以通常这种方法在实际中应用比较多!(3)在进行判别分析之前,应首先检验各类均值是不是有差异(因为判别分析要求给定的样本数据必须

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。