椭圆的简单几何性质典型例题.doc

椭圆的简单几何性质典型例题.doc

ID:53325638

大小:1.34 MB

页数:22页

时间:2020-04-03

椭圆的简单几何性质典型例题.doc_第1页
椭圆的简单几何性质典型例题.doc_第2页
椭圆的简单几何性质典型例题.doc_第3页
椭圆的简单几何性质典型例题.doc_第4页
椭圆的简单几何性质典型例题.doc_第5页
资源描述:

《椭圆的简单几何性质典型例题.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、课前思考:我们是如何定义圆的?又是如何推导出圆的标准方程的?1.椭圆的第一定义平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。若为椭圆上任意一点,则有。问题:假设与两定点的距离之和为d,为什么要满足d>2c呢?(1)当d=2c时,轨迹是什么?(2)当d<2c时,轨迹又是什么?(1)、当d>

2、F1F2

3、时,是椭圆;(2)、当d=

4、F1F2

5、时,是线段;(3)、当d<

6、F1F2

7、轨迹不存在.3.椭圆的标准方程步骤:(1)建系设点(2)写出点的集合(3)写出代数方程(4)化简方程(四)方程推导,学会

8、建系取过焦点的直线为轴,线段的垂直平分线为轴设为椭圆上的任意一点,椭圆的焦距是().则,又设M与距离之和等于()(常数),,化简,得,由定义,令代入,得,两边同除得此即为椭圆的标准方程它所表示的椭圆的焦点在轴上,焦点是22/22,中心在坐标原点的椭圆方程其中注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,只要将方程中的调换,即可得,也是椭圆的标准方程理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在与这两个标准方程中,都有的要求,如方程就不能肯定焦点在哪个轴上;分清两种形式的标准

9、方程,可与直线截距式类比,如中,由于,所以在轴上的“截距”更大,因而焦点在轴上(即看分母的大小)椭圆的标准方程为:()(焦点在x轴上)或()(焦点在y轴上)。注:①以上方程中的大小,其中;总结②在和两个方程中都有的条件,要分清焦点的位置,只要看和的分母的大小。例如椭圆(,,)当时表示焦点在轴上的椭圆;当时表示焦点在轴上的椭圆。典型例题一22/22例1椭圆的一个顶点为,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当为长轴端点时,,,椭圆的标准方程为:;(2)当为短轴端点时,,,椭圆的标准方程为:;说明:椭圆的

10、标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:∴,∴.说明:求椭圆的离心率问题,通常有两种处理方法,一是求,求,再求比.二是列含和的齐次方程,再化含的方程,解方程即可.典型例题三例3已知中心在原点,焦点在轴上的椭圆与直线交于、两点,为中点,的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为,由,得,22/22∴,,,∴,∴为所求.说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系

11、数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆上不同三点,,与焦点的距离成等差数列.(1)求证;(2)若线段的垂直平分线与轴的交点为,求直线的斜率.证明:(1)由椭圆方程知,,.由圆锥曲线的统一定义知:,∴.同理.∵,且,∴,即.(2)因为线段的中点为,所以它的垂直平分线方程为.又∵点在轴上,设其坐标为,代入上式,得22/22又∵点,都在椭圆上,∴∴.将此式代入①,并利用的结论得∴.典型例题五例5已知椭圆,、为两焦点,问能否在椭圆上找一点,使到左准线的距离是与的等比中项?若存在,则求出点的坐标;若不存在,请说明理由.解:假设存在,设,由已知条件得

12、,,∴,.∵左准线的方程是,∴.又由焦半径公式知:,.∵,22/22∴.整理得.解之得或.①另一方面.②则①与②矛盾,所以满足条件的点不存在.说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设存在,推出矛盾结论(读者自己完成).典型例题六例6已知椭圆,求过点且被平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为,利用条件求.解法一:设所求直线的斜率为,则直线方程为.代入椭圆方程,并整理得.由韦达定理得

13、.∵是弦中点,∴.故得.所以所求直线方程为.分析二:设弦两端坐标为、,列关于、、、的方程组,从而求斜率:.22/22解法二:设过的直线与椭圆交于、,则由题意得①-②得.⑤将③、④代入⑤得,即直线的斜率为.所求直线方程为.说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过

14、点;(2)在轴上的一个焦点与短轴两端点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。