欢迎来到天天文库
浏览记录
ID:53265144
大小:73.36 KB
页数:14页
时间:2020-04-02
《选修2-1 第1讲:常用逻辑用语.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、选修2-1第1讲:常用逻辑用语基础梳理1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫做逻辑联结词.(2)简单复合命题的真值表:pqp∧qp∨q¬p真真真真假假真假真真真假假真假假假假假真2.全称量词与存在量词(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.14(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.(3)全称量词用符号“∀”表示;存在量词用符号“∃”表示.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.
2、(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定为:非p且非q;p且q的否定为:非p或非一个关系逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.两类否定1.含有一个量词的命题的否定(1)全称命题的否定是特称命题全称命题p:∀x∈M,p(x),它的否定¬p:∃x0∈M,¬p(x0).(2)特称命题
3、的否定是全称命题特称命题p:∃x0∈M,p(x0),它的否定¬p:∀x∈M,¬p(x).2.复合命题的否定(1)(p∧q)⇔(¬p)∨(¬q);(2)(p∨q)⇔(¬p)∧(¬q).三条规律14(1)对于“p∧q”命题:一假则假;(2)对“p∨q”命题:一真则真;(3)对“¬p”命题:与“p”命题真假相反.双基自测1.(人教A版教材习题改编)已知命题p:∀x∈R,sinx≤1,则( ). A.¬p:∃x0∈R,sinx0≥1B.¬p:∀x∈R,sinx≥1C.¬p:∃x0∈R,si
4、nx0>1D.¬p:∀x∈R,sinx>12.(2011·北京)若p是真命题,q是假命题,则( ).A.p∧q是真命题B.p∨q是假命题C.¬p是真命题D.¬q是真命题3.设p、q是两个命题,则复合命题“p∨q为真,p∧q为假”的充要条件是( )A.p、q中至少有一个为真B.p、q中至少有一个为假C.p、q中有且只有一个为真D.p为真、q为假4.(2010·安徽)命题“对任何x∈R,
5、x-2
6、+
7、x-4
8、>3”的否定是______________________.典型例题一、题型一:命题、真
9、命题、假命题的判断1.例1:下列语句是命题的是( )A.梯形是四边形 B.作直线ABC.x是整数D.今天会下雪吗2、例2.下列说法正确的是( )14A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题变式练习:下列命题是真命题的是( )A.{∅}是空集B.是无限集C.π是有理数D.x2-5x=0的根是自然数二、题型二:复合
10、命题的结构例3将下列命题改写成“若p,则q”的形式,并判断命题的真假:(1)6是12和18的公约数;(2)当a>-1时,方程ax2+2x-1=0有两个不等实根;(3)已知x、y为非零自然数,当y-x=2时,y=4,x=2.变式练习:指出下列命题的条件p与结论q,并判断命题的真假:(1)若整数a是偶数,则a能被2整除;(2)对角线相等且互相平分的四边形是矩形;(3)相等的两个角的正切值相等.14三、题型三:命题真假判断中求参数范围例4、已知p:x2+mx+1=0有两个不等的负根,q:方程4x2+4
11、(m-2)x+1=0(m∈R)无实根,求使p为真命题且q也为真命题的m的取值范围.变式练习:已知命题p:lg(x2-2x-2)≥0;命题q:0y,则x2>y2”的逆否命题是( )A.若x≤y,则
12、x2≤y2B.若x>y,则x2b>0,则>>0”的逆否命题;④“若m>1,则mx2-2(m+1)x+(m-3)>0的解集为R”的逆命题.其中真命题的序号为________.变式练习.若命题p的逆命题是q,命题q的否命题是r,则p是r的( )A.逆
此文档下载收益归作者所有