复摆运动分析研究.doc

复摆运动分析研究.doc

ID:53113629

大小:62.17 KB

页数:4页

时间:2020-04-01

复摆运动分析研究.doc_第1页
复摆运动分析研究.doc_第2页
复摆运动分析研究.doc_第3页
复摆运动分析研究.doc_第4页
资源描述:

《复摆运动分析研究.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、理论力学实验报告之复摆运动分析姓名:桂馨  班级:机械0803学号:200804000306成绩:复摆运动分析研究一、实验目的1、进一步掌握动力学基本理论,掌握复摆运动得规律;2、掌握利用理论力学理论知识解决复杂力学问题的能力;3、提高利用计算机进行辅助分析的能力二、实验内容工程中对于几何形状复杂的物体,常用实验得方法测定其转动惯量。欲求其对轴O的转动惯量,可将物体在轴O悬挂起来,并使其作微幅摆动,利用其摆动周期得等时性计算出转动惯量。当摆动角度增大时,复摆是否还具有等时性呢?本实验对复摆得运动规律进行详细分析研究:建立复摆得运动微分方程,利用Manlab对复摆进行仿真计算,研究复

2、摆的摆角对运动周期得影响。三、实验原理1、动量矩定理或刚体定轴转动微分方程2、运动微分方程得Matlab数值求解在生产和科研中,所建立的微分方程往往很复杂,且大多得不出解析解。而在实际中一般是要求得到解在若干点上满足规定精确度的近似值。对于常微分方程其数值解是指由初始点t0开始的若干离散的t值处,即对t0

3、n,tspan,)上面的调用格式中,各参数的具体含义如下:参数“odefun”表示ODE函数的名称;参数“tspan”,当tspan便是二元向量[to,tn]时,tspan是用来定义求解数值解的时间区间的;当tspan表示多元向量[to,t1,t2……tn]时,命令将会在tspan定义的时间序列进行数值求解,此时tspan的元素必须按照单调次序排列;参数y0表示为微分方程的初始数值;参数T是所求得的自变量数据列向量;参数Y表示所求微分方程的因变量数据矩阵。Solver为命令ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb之一。其中ode

4、45,ode23,ode113用于求解非刚性微分方程,ode15s,ode23s,ode23t,ode23tb用于求解刚性微分方程。ode45是大部分场合的首选算法。第4页共4页理论力学实验报告之复摆运动分析Matlab中常微分方程的数值求解命令直接求解的是一阶常微分方程。而动力学微分方程一般是两阶的。利用数值方法求解动力学微分方程需要首先对其进行降阶增维处理。四、实验过程1、力学模型建立、描述所研究复摆如下图所示:2、数学模型建立根据上图列出复摆的运动微分方程,其中复摆质量为m,质心为C,质心到悬挂点O的距离为a;作如下代换:于是上面复摆的运动微分方程改写为一阶方程组的形式如下:

5、3、数学模型求解仿真根据上面一阶方程组,用MATLAB编写出程序代码(见附录),利用所编写好的matlab程序进行仿真试验,绘制振动波形。五、实验结果分析讨论运行绘制出得波形图如下:第4页共4页理论力学实验报告之复摆运动分析theta=π/20其他条件不变,令theta=π/15,所绘制得图如下图所示:theta=π/15其他条件不变,令theta=π/10,所绘制得图如下图所示:theta=π/10实验结果表明:当摆角很小时,小球得位移呈周期性变化,当摆角增大时则不呈周期性变化,位移逐渐减小,上图看得并不明显。附录:程序代码M函数:functionydot=fthbai(t,y)

6、第4页共4页理论力学实验报告之复摆运动分析globalmgaJydot=[y(2)-m*g*a*sin(y(1))/J];主程序:globalJmagtmax=1;step=0.01;J=2;g=9.8;m=100;a=3;theta=pi/20;[t,y]=ode45('fthbai',[0:step:tmax],[theta,0]);subplot(2,2,1);plot(t,y(:,1));subplot(2,2,2);plot(t,y(:,2));第4页共4页

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。