高考导数(洛必达法则).doc

高考导数(洛必达法则).doc

ID:53113372

大小:880.50 KB

页数:5页

时间:2020-04-01

高考导数(洛必达法则).doc_第1页
高考导数(洛必达法则).doc_第2页
高考导数(洛必达法则).doc_第3页
高考导数(洛必达法则).doc_第4页
高考导数(洛必达法则).doc_第5页
资源描述:

《高考导数(洛必达法则).doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第二部分:泰勒展开式1.其中;2.其中;3.,其中;4.其中;第三部分:新课标高考命题趋势及方法许多省市的高考试卷的压轴题都是导数应用问题,其中求参数的取值范围就是一类重点考查的题型.这类题目容易让学生想到用分离参数的方法,一部分题用这种方法很凑效,另一部分题在高中范围内用分离参数的方法却不能顺利解决,高中阶段解决它只有华山一条路——分类讨论和假设反证的方法.虽然这些压轴题可以用分类讨论和假设反证的方法求解,但这种方法往往讨论多样、过于繁杂,学生掌握起来非常困难.研究发现利用分离参数的方法不能解决这部分问题的

2、原因是出现了”型的式子,而这就是大学数学中的不定式问题,解决这类问题的有效方法就是洛必达法则.第四部分:洛必达法则及其解法洛必达法则:设函数、满足:(1);(2)在内,和都存在,且;(3)(可为实数,也可以是).则.(2011新)例:已知函数,曲线在点处的切线方程为.(Ⅰ)求、的值;(Ⅱ)如果当,且时,,求的取值范围.(Ⅰ)略解得,.(Ⅱ)方法一:分类讨论、假设反证法由(Ⅰ)知,所以.考虑函数,则.(i)当时,由知,当时,.因为,所以当时,,可得;当时,,可得,从而当且时,,即;(ii)当时,由于当时,,故,

3、而,故当时,,可得,与题设矛盾.(iii)当时,,而,故当时,,可得,与题设矛盾.综上可得,的取值范围为.注:分三种情况讨论:①;②;③不易想到.尤其是②时,许多考生都停留在此层面,举反例更难想到.而这方面根据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.当,且时,,即,也即,记,,且则,记,则,从而在上单调递增,且,因此当时,,当时,;当时,,当时,,所以在上单调递减,在上单调递增.由洛必达法则有,即当时,,即当,且时,.因为恒成立,所以.综上所述,当,且时,成立,的取值范围为

4、.注:本题由已知很容易想到用分离变量的方法把参数分离出来.然后对分离出来的函数求导,研究其单调性、极值.此时遇到了“当时,函数值没有意义”这一问题,很多考生会陷入困境.如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法.例(2010新):设函数.(Ⅰ)若,求的单调区间;(Ⅱ)当时,,求的取值范围.应用洛必达法则和导数(Ⅱ)当时,,即.①当时,;②当时,等价于.记,则.记,则,当时,,所以在上单调递增,且,所以在上单调递增,且,因此当时,,从而在上单调递增.由洛必达法则有,

5、即当时,,所以当时,所以,因此.综上所述,当且时,成立.自编:若不等式对于恒成立,求的取值范围.解:应用洛必达法则和导数当时,原不等式等价于.记,则.记,则.因为,,所以在上单调递减,且,所以在上单调递减,且.因此在上单调递减,且,故,因此在上单调递减.由洛必达法则有,即当时,,即有.故时,不等式对于恒成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足:(1)可以分离变量;②用导数可以确定分离变量后一端新函数的单调性;③出现“”型式子.2010海南宁夏文(21)已知函数.(Ⅰ)若在时有极值,

6、求函数的解析式;(Ⅱ)当时,,求的取值范围.解:(Ⅱ)应用洛必达法则和导数时,,即.①当时,;②当时,等价于,也即.记,,则.记,,则,因此在上单调递增,且,所以,从而在上单调递增.由洛必达法则有,即当时,所以,即有.综上所述,当,时,成立.2010全国大纲理(22)设函数.(Ⅰ)证明:当时,;(Ⅱ)设当时,,求的取值范围.解:(Ⅰ)略(Ⅱ)应用洛必达法则和导数由题设,此时.①当时,若,则,不成立;②当时,当时,,即;若,则;若,则等价于,即.记,则.记,则,.因此,在上单调递增,且,所以,即在上单调递增,且

7、,所以.因此,所以在上单调递增.由洛必达法则有,即当时,,即有,所以.综上所述,的取值范围是.(2008)例:设函数.(Ⅰ)求的单调区间;(Ⅱ)如果对任何,都有,求的取值范围.解:(Ⅰ).当()时,,即;当()时,,即.因此在每一个区间()是增函数,在每一个区间()是减函数.(Ⅱ)应用洛必达法则和导数若,则;若,则等价于,即则.记,因此,当时,,在上单调递减,且,故,所以在上单调递减,而.另一方面,当时,,因此.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。