高中数学必修三-2.3-互斥事件.doc

高中数学必修三-2.3-互斥事件.doc

ID:53112795

大小:1.28 MB

页数:10页

时间:2020-04-01

高中数学必修三-2.3-互斥事件.doc_第1页
高中数学必修三-2.3-互斥事件.doc_第2页
高中数学必修三-2.3-互斥事件.doc_第3页
高中数学必修三-2.3-互斥事件.doc_第4页
高中数学必修三-2.3-互斥事件.doc_第5页
资源描述:

《高中数学必修三-2.3-互斥事件.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、高中数学必修三2.3 互斥事件教学分析     教科书通过实例定义了互斥事件、对立事件的概念.教科书通过类比频率的性质,利用频率与概率的关系得到了概率的几个基本性质,要注意这里的推导并不是严格的数学证明,仅仅是形式上的一种解释,因为频率稳定在概率附近仅仅是一种描述,没有给出严格的定义,严格的定义,要到大学里的概率统计课程中才能给出.三维目标     1.正确理解事件的包含、并事件、交事件、相等事件以及互斥事件、对立事件的概念;通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类比与归纳的数学思想.2

2、.概率的几个基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;(2)当事件A与B互斥时,满足加法公式:P(A+B)=P(A)+P(B);(3)若事件A与B为对立事件,则A+B为必然事件,所以P(A+B)=P(A)+P(B)=1,于是有P(A)=1-P(B).3.正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系,通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣.重点难点     教学重点:概率的加法公式及其应用.教学难点:

3、事件的关系与运算.课时安排     1课时导入新课     思路1.体育考试的成绩分为四个等级:优、良、中、不及格,某班50名学生参加了体育考试,结果如下:优85分及以上9人良75~84分15人中60~74分21人不及格60分以下5人在同一次考试中,某一位同学能否既得优又得良?从这个班任意抽取一位同学,那么这位同学的体育成绩为“优良”(优或良)的概率是多少?为解决这个问题,我们学习概率的基本性质,教师板书课题.思路2.(1)集合有相等、包含关系,如{1,3}={3,1},{2,4}⊂{2,3,4,5}等;(2)

4、在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},C3={出现1点或2点},C4={出现的点数为偶数},….师生共同讨论:观察上例,类比集合与集合的关系、运算,你能发现事件的关系与运算吗?这就是本堂课要讲的知识概率的基本性质.10思路3.全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是和,则该省夺取该次冠军的概率是+,对吗?为什么?为解决这个问题,我们学习概率的基本性质.推进新课     在掷骰子试验中,可以定义许多事件如:C1={出现1点},C2={出现2点},

5、C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于3},D3={出现的点数小于5},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},…….类比集合与集合的关系、运算说明这些事件的关系和运算,并定义一些新的事件.1.如果事件C1发生,则一定发生的事件有哪些?反之,成立吗?2.如果事件C2发生或C4发生或C6发生,就意味着哪个事件发生?3.如果事件D2与事件H同时发生,就意味着哪

6、个事件发生?4.事件D3与事件F能同时发生吗?5.事件G与事件H能同时发生吗?它们两个事件有什么关系?活动:学生思考或交流,教师提示点拨,事件与事件的关系要判断准确,教师及时评价学生的答案.讨论结果:1.如果事件C1发生,则一定发生的事件有D1,E,D3,H,反之,如果事件D1,E,D3,H分别成立,能推出事件C1发生的只有D1.2.如果事件C2发生或C4发生或C6发生,就意味着事件G发生.3.如果事件D2与事件H同时发生,就意味着C5事件发生.4.事件D3与事件F不能同时发生.5.事件G与事件H不能同时发生,

7、但必有一个发生.由此我们得到事件A,B的关系和运算如下:(1)如果事件A发生,则事件B一定发生,这时我们说事件B包含事件A(或事件A包含于事件B),记为B⊇A(或A⊆B),不可能事件记为∅,任何事件都包含不可能事件.(2)如果事件A发生,则事件B一定发生,反之也成立(若B⊇A同时B⊆A),我们说这两个事件相等,即A=B.如C1=D1.(3)如果某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与B的并事件(或和事件),记为A∪B或A+B.(4)如果某事件发生当且仅当事件A发生且事件B发生,则称此事件为

8、事件A与B的交事件(或积事件),记为A∩B或AB.(5)如果A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥,即事件A与事件B在任何一次试验中不会同时发生.(6)如果A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生.继续依次提出以下问题:1.概率的取值范围是多少?2.必然事件的概率是多少?103.不可能事件的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。