欢迎来到天天文库
浏览记录
ID:53106137
大小:395.00 KB
页数:14页
时间:2020-04-01
《江苏省扬州中学2012-2013学年高一数学下学期期末考试试题(含解析)苏教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012-2013学年江苏省扬州中学高一(下)期末数学试卷参考答案与试题解析 一、填空题(本大题共14题,每题5分,共70分,请将答案填写在答题卷相应的位置上)1.(5分)求值sin75°= .考点:两角和与差的正弦函数.专题:三角函数的求值.分析:把75°变为45°+30°,然后利用两角和的正弦函数公式化简后,再利用特殊角的三角函数值即可求出值.解答:解:sin75°=sin(45°+30°)=sin45°cos30°+cos45°sin30°=×+×=故答案为:点评:此题考查学生灵活运用两角和的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.学生做题时注意角度75°的变换,与此
2、类似的还有求sin15°. 2.(5分)已知直线l1:ax+2y+6=0与l2:x+(a﹣1)y+a2﹣1=0平行,则实数a的取值是 ﹣1 .考点:直线的一般式方程与直线的平行关系.专题:计算题.分析:两直线的斜率都存在,由平行条件列出方程,求出a即可.解答:解:由题意知,两直线的斜率都存在,由l1与l2平行得﹣=∴a=﹣1a=2,当a=2时,两直线重合.∴a=﹣1故答案为:﹣1点评:本题考查斜率都存在的两直线平行的性质,一次项的系数之比相等,但不等于常数项之比. 3.(5分)在△ABC中,若b2+c2﹣a2=bc,则A= 60° .考点:余弦定理.专题:计算题.分析:利用余弦定理表示出co
3、sA,把已知的等式代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.14解答:解:∵b2+c2﹣a2=bc,∴根据余弦定理得:cosA===,又A为三角形的内角,则A=60°.故答案为:60°点评:此题考查了余弦定理,以及特殊角的三角函数值,利用了整体代入得数学思想,熟练掌握余弦定理是解本题的关键. 4.(5分)直线x﹣2y+1=0在两坐标轴上的截距之和为 ﹣ .考点:直线的截距式方程.专题:直线与圆.分析:根据直线x﹣2y+1=0的方程,分别令x,y分别为0,可得截距,进而可得答案.解答:解:因为直线l的方程为:x﹣2y+1=0,令x=0,可得y=,令y=0
4、,可得x=﹣1,故直线l在两坐标轴上的截距之和为+(﹣1)=﹣,故答案为:﹣.点评:本题考查直线的一般式方程与直线的截距式方程,涉及截距的求解,属基础题. 5.(5分)已知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d= 2 .考点:等差数列的前n项和.专题:等差数列与等比数列.分析:由等差数列的性质和求和公式可得a2=4,进而可得d=a3﹣a2,代入求解即可.解答:解:由题意可得S3===12,解得a2=4,故公差d=a3﹣a2=6﹣4=2故答案为:2点评:本题考查等差数列的前n项和公式和公差的求解,属基础题. 6.(5分)若x+y=1,则x2+y2的最小值为 .
5、考点:点到直线的距离公式.专题:直线与圆.分析:在平面直角坐标系中作出直线x+y=1,由x2+y2=()2可知x2+y214的最小值是原点到直线x+y=1的距离的平方.解答:解:如图,由题意可知,求x2+y2的最小值是求原点到直线x+y=1的距离的平方,化x+y=1为一般式,即x+y﹣1=0,则(0,0)到x+y﹣1=0的距离为=,所以原点到直线x+y=1的距离的平方为()2=.故答案为:.点评:本题考查了点到直线的距离公式,考查了数学转化思想和数形结合思想,解答此题的关键是对x2+y2的几何意义的理解,此题是中档题. 7.(5分)若数列{an}满a1=1,=,a8= .考点:数列递推式;
6、数列的函数特性.专题:计算题;等差数列与等比数列.分析:利用累乘法可得a8=,代入数值即可得到答案.解答:解:a8===,故答案为:.点评:本题考查数列的函数特性、由递推式求数列的项,考查累乘法求数列通项. 8.(5分)设实数x,y满足,则的最大值是 .14考点:基本不等式.专题:计算题.分析:先画出不等式组所表示的平面区域,然后根据的几何意义是区域内一点与坐标原点连线的斜率,从而可求出的最大值.解答:解:根据实数x,y满足,画出约束条件,如右图中阴影部分而的几何意义是区域内一点与坐标原点连线的斜率当过点A(1,)时斜率最大,最大值为故答案为:点评:本题主要考查了线性规划为载体考查的几何意
7、义,同时考查了作图能力和运算求解的能力,属于基础题. 9.(5分)(2012•海口模拟)设sin(+θ)=,则sin2θ= ﹣ .考点:二倍角的正弦;两角和与差的正弦函数.专题:计算题.分析:利用两角和的正弦公式可得+=,平方可得+sin2θ=,由此解得sin2θ的值.解答:解:∵sin(+θ)=,即+=,平方可得+sin2θ=,解得sin2θ=﹣,故答案为﹣.点评:本题主要考查两角和的正弦公式、二倍角的正弦
此文档下载收益归作者所有