欢迎来到天天文库
浏览记录
ID:56165774
大小:340.50 KB
页数:13页
时间:2020-06-20
《江苏省扬州市江都市大桥中学2012-2013学年高一数学下学期开学考试试题(含解析)苏教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2012-2013学年江苏省扬州市江都市大桥中学高一(下)开学数学试卷一、填空题1.(3分)不等式
2、2x﹣1
3、﹣
4、x﹣2
5、<0的解集为 {x
6、﹣1<x<1} .考点:绝对值不等式的解法.专题:计算题;转化思想.分析:首先分析题目求不等式
7、2x﹣1
8、﹣
9、x﹣2
10、<0的解集,可以考虑平方去绝对的方法,先移向,平方,然后转化为求解一元二次不等式即可得到答案.解答:解:
11、2x﹣1
12、﹣
13、x﹣2
14、<0移向得:丨2x﹣1丨<丨x﹣2丨两边同时平方得(2x﹣1)2<(x﹣2)2即:4x2﹣4x+1<x2﹣4x+4,整理得:x2<1,即﹣1<x<1故答案为:{x
15、﹣1<x<1}.点评:此题主要考查绝对值不
16、等式的解法的问题,其中涉及到平方去绝对值的方法,对于绝对值不等式属于比较基础的知识点,需要同学们掌握. 2.(3分)已知向量=(1,2),=(x,4),且⊥,则x= ﹣8 .考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由两向量垂直的坐标表示直接代入坐标求解.解答:解:由向量=(1,2),=(x,4),且⊥,则1×x+2×4=0,所以x=﹣8.故答案为﹣8.点评:本题考查了数量积判断两个向量的垂直关系,若=(a1,a2),=(b1,b2),则⊥⇔a1a2+b1b2=0,此题是基础题. 3.(3分)(2010•宣武区二模)数列a1,a2,…,a7中,恰好有5个a,2个
17、b(a≠b),则不相同的数列共有 21 个.考点:排列、组合的实际应用.专题:计算题.分析:7个元素进行全排列共有A77种结果,在这些结果中有5个a,2个b,这样前面的全排列就出现了重复,共重复了A55A22次,得到不同的排列共有种结果.13解答:解:∵数列a1,a2,…,a7中,恰好有5个a,2个b7个元素进行全排列共有A77种结果,在这些结果中有5个a,2个b,这样前面的全排列就出现了重复,共重复了A55A22次,∴不同的排列共有=21种结果,故答案为:21.点评:本题考查在排列组合中出现重复的元素的排列,这种问题,首先要进行正常排列,后面要除以重复的次数,重复的次数是相同元素的一个
18、全排列. 4.(3分)给出以下变量①吸烟,②性别,③宗教信仰,④国籍,其中属于分类变量的有 ②③④ .考点:独立性检验.专题:探究型.分析:根据分类变量的定义判断.解答:解:①因为吸烟不是分类变量,是否吸烟才是分类变量,其他②③④属于分类变量.故答案为:②③④.点评:本题主要考查分类变量的判断.分类变量的变量值是定性的,表现为互不相容的类别或属性.分类变量可分为无序变量和有序变量两类. 5.(3分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称点(x0,x0)为函数的不动点,对于任意实数b,函数f(x)=ax2+bx﹣b总有相异不动点,实数a的取值范围是 0<a<1 .考
19、点:二次函数的性质.专题:计算题;新定义.分析:函数f(x)=ax2+bx﹣b总有两个相异的不动点,则方程ax2+bx﹣b=x有两个相异的实根,由此可以构造出一个不等式,结合函数的性质,解不等式即可得到a的范围.解答:解:由题意可得)函数f(x)=ax2+bx﹣b总有两个相异的不动点,即关于x的方程f(x)=x有两个不等根.化简f(x)=x得到ax2+(b﹣1)x﹣b=0.所以(b﹣1)2+4ab>0,即b2+(4a﹣2)b+1>0恒成立,所以(4a﹣2)2﹣4<0.解之得:0<a<1故答案为:0<a<1点评:本题考查的知识点是二次函数的性质,其中根据二次函数、二次方程、二次不等式之间的
20、关系,将函数问题转化为不等式或方程问题是解答本题的关键. 136.(3分)已知△ABC中,角A、B、C的对边分别为a、b、c,且,那么∠C= .考点:余弦定理.专题:计算题;解三角形.分析:由正弦定理的面积公式结合余弦定理,化简可得cosC=sinC即tanC=1,结合三角形内角的范围,可得C的大小.解答:解:∵根据余弦定理,得a2+b2﹣c2=2abcosC∴=abcosC∵由正弦定理得S△ABC=absinC∴abcosC=absinC,得cosC=sinC即tanC=1,C∈(0,π)得C=故答案为:点评:本题给出三角形面积公式关于a2、b2、c2的式子,求角C大小.着重考查了三
21、角形面积公式和正余弦定理等知识,属于基础题. 7.(3分)在△ABC中,,C=150°,BC=1,则AB= .考点:正弦定理.专题:计算题.分析:由A为三角形的内角,根据cosA的值求出sinA的值,再由sinC及a的值,利用正弦定理求出c的值,即为AB的值.解答:解:∵A为三角形的内角,cosA=,∴sinA==,∵sinC=sin150°=,BC=a=1,∴由正弦定理=得:AB=c===.故答案为:13点评:此题考查了正弦定理
此文档下载收益归作者所有