反函数性质的应用.doc

反函数性质的应用.doc

ID:53084738

大小:207.50 KB

页数:3页

时间:2020-04-01

反函数性质的应用.doc_第1页
反函数性质的应用.doc_第2页
反函数性质的应用.doc_第3页
资源描述:

《反函数性质的应用.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、反函数性质的应用中江城北中学曾必亮只有定义域和值域一一对应的函数才有反函数,反函数是由原函数派生出来的,它的定义域、对应法则、值域完全由原函数决定。因此利用这一关系可以将原函数的问题与反函数的问题相互转化,使问题容易解决。现在看一下反函数性质的应用。⒈利用反函数的定义求函数的值域例1:求函数y=的值域。分析:这种函数可以利用分离常数法或反函数法求值域,下面利用反函数法来求解。解:由y=得y(2x+1)=x-1∴(2y-1)x=-y-1∴x=∵x是自变量,是存在的,∴2y-10,∴y。故函数y=的值域为:{y│y}。点评:形如y=的函数都可以用反函数法求它的值域。⒉原函数与反函数定义域、值域互换

2、的应用例2:已知f(x)=4-2,求f(0)。分析:要求f(0),只需求f(x)=0时自变量x的值。解:令f(x)=0,得4-2=0,∴2(2-2)=0,∴2=2或2=0(舍),∴x=1。故f(0)=1。点评:反函数的函数值都可以转化为求与之对应的原函数的自变量之值,反之也成立。⒊原函数与反函数的图像关于直线y=x对称的应用例3:求函数y=(x(-1,+))的图像与其反函数图像的交点。分析:可以先求反函数,再联立方程组求解;也可以利用原函数与反函数的图像关于直线y=x对称求解,这里用后一种方法求解。只要原函数与反函数不是同一函数,它们的交点就在直线y=x上。解:由得或∴原函数和反函数图像的交点

3、为(0,0)和(1,1)。点评:利用利用原函数与反函数的图像关于直线y=x对称的性质,可以简化运算,提高准确率。但要注意原函数与反函数不能是同一函数,它们的交点才在直线y=x上。⒋原函数与反函数的单调性相同的应用例4:已知f(x)=2+1的反函数为f(x),求f(x)<0的解集。分析:因为f(x)=2+1在R上为增函数,所以f(x)在R上也为增函数。又因为原函数与反函数定义域、值域互换,所以f(x)中的x的范围就是f(x)的范围。解:由f(x)=2+1>1得f(x)中的x>1。又∵f(x)<0且f(x)=2+1在R上为增函数,∴f

4、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。