欢迎来到天天文库
浏览记录
ID:53040971
大小:137.50 KB
页数:2页
时间:2020-03-31
《高中数学 数列求和教案 新人教A版必修5.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数列求和【高考要求】等差数列与等比数列的有限项求和总是有公式可求的,其它的数列的求和不总是可求的,但某些特殊数列的求和可采用分部求和法转化为等差数列或等比数列的和或用裂项求和法、错位相减法、逆序相加法、组合化归法,递推法【知识点归纳】1等差数列的前n项和公式:Sn=或Sn=或Sn=;当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式2等比数列的前n项和公式:当q=1时,Sn=na1(是关于n的正比例式);当q≠1时,Sn=或Sn=。3分组求和,如an=2n+3n或an=n(n+1)。重要公式:1+2+…+n=n(n+1)12+22+…+n2
2、=n(n+1)(2n+1)13+23+…+n3=(1+2+…+n)2=n2(n+1)24错位相减法求和,如an=(2n-1)2n。(非常数列的等差数列与等比数列的积的形式)5.裂项求和,将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:(1)=-;(2)n·n!=(n+1)!-n!;(3)=-;(4)Cn-1r-1=Cnr-Cn-1r;(5)=cotα-cotα等。6反序相加法求和,如an=,求S99。7求数列{an}的最大、最小项的方法:2①;②an=f(n),研究函数
3、f(n)的增减性,如an=9.等比数列的前项和公式的常见应用题:⑴生产部门中有增长率的总产量问题.例如,第一年产量为,年增长率为,则每年的产量成等比数列,公比为.其中第年产量为,且过年后总产量为:⑵银行部门中按复利计算问题.例如:一年中每月初到银行存元,利息为,每月利息按复利计算,则每月的元过个月后便成为元.因此,第二年年初可存款:=.⑶分期付款应用题:为分期付款方式贷款为a元;m为m个月将款全部付清;为年利率.。【补充题】2
此文档下载收益归作者所有