欢迎来到天天文库
浏览记录
ID:53029210
大小:184.03 KB
页数:6页
时间:2020-04-14
《基于函数型数据的系数正则化回归的收敛速度-论文.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、数学杂志Vo1.35(2015)J.ofMath.(PRC)NO.20NTHEC0NVERGENCERATEoFC0EFFICIENT.BASEDREGULARIZEDREGRESSIoNFoRFUNCTIoNALDATATAOYan-fang.TANGYi。(。D印t.ofBasis,Chan~iangProfessionalCollege,Wuhan430074,Chin。)(2.sc。。:D,M。t.。ndc。mputersc.,n。n(,htersityofNati。礼托tes,乱mi礼g650031,Chi钆a)Abstract:Thispaperinvestigates
2、thegeneralizationperformanceofleastsquareregressionwithfunctionaldataandgl-regularizer.TheestimateoflearningrateisestablishedbyRademacheralveragetechnique.Thetheoreticalresultisanaturalextensionforcoeficientbasedregularizedregressionwheninputspaceisasubsetofinfinite—dimensionalEuclideanspace.K
3、eywords:regression;functionaldata;l—regularizer;Rademacheraverage2010MRSubjectClassification:62J02Documentcode:AArticleID:0255—7797(2O15)02—0281—061IntroductionLet(,d)beametricspaceandYC【一M,M]forsomeM>0.TherelationbetweentheinputX∈andtheoutputY∈isdescribedbyafixed(butunknown)distributionponz:=
4、×.Basedonasetofsamplesz:={Z]m1={(,))1∈z,thegoalofleastsquareregressionistopickaflmctionf:suchthattheexpectedrisk)=()assmallaspossible.ThefunctionthatminimizestheriskiscalledtheregressionfunctionItisgivenby):(xEX,wherep(.I)istheconditionalprobabilitymeasureatinducedbyP·Inthispaperweconsiderkern
5、el—basedleastsquareregressionwith1一regularizer-RecallthatK:×.一千isaMercerkernelifitisacontinuous,symmetric,andpositivesemi_deftnite.ThecandidatereproducingkernelHilbertspace(RKHS)7-/KassociatedwithaReceiveddate:2012—10—13Accepteddate:2014—01·21Foundationitem:SupportedpartiallybyNationalNaturalS
6、cienceFoundationofChina(61105051).Biography:TaoYanfang(1981一),femalebornatWuhan,Hubei,lecturer)majorinstatisticallearningtheory.E-mail:tyf3122@126.com.282JournalofMathematicsV01.35MercerkernelKisdefinedastheclosureofthelinearspanofthesetoffunctions{::(,‘):∈),equippedwiththeinnerproduct(·,·)Kde
7、finedby(Kx,Kv)K=g(x,Y)(see[1】).Thereproducingpropertyisgivenby(,f)K:f(x)forall∈andf∈7-/K.Thedatadependenthypothesisspace(relatedwithKandz)isdefinedby=(∑:∈=1,⋯,m)Theregressionalgorithmwith1一regularizerisgivenas,z=arg(1.1)倒min{gz(f)+Aa(,)
此文档下载收益归作者所有