资源描述:
《高中数学1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程课件新人教A版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.了解定积分的实际背景.2.了解“以直代曲”“以不变代变”的思想方法.3.会求曲边梯形的面积和汽车行驶的路程.2.曲边梯形的面积(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图a).(2)求曲边梯形面积的方法与步骤:①分割:把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形(如图b);②近似代替:对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值;③求和:把以近似代替得到的每个小曲边梯形面积的近似值求和;④
2、取极限:当小曲边梯形的个数趋向无穷时,各小曲边梯形的面积之和趋向一个定值,即为曲边梯形的面积.3.变速直线运动的路程一般地,如果物体做变速直线运动,速度函数为v=v(t),那么也可以采用分割、近似代替、求和、取极限的方法,求出它在a≤t≤b内所作的位移s.解析:对于v=at+b,当a=0时为匀速直线运动,当a≠0时为匀变速直线运动,其中当a>0时为匀加速直线运动,当a<0时为匀减速直线运动.答案:B2.如何理解求汽车行驶的路程的方法?剖析:把求变速直线运动的路程问题,转化为求匀速直线运动的路程问题.采用的方法仍然是分割、近似代替、求和、取极限.求变速直线运动的路程和曲边梯形
3、的面积,虽然它们的意义不同,但都可以归纳出求一个特定形式和的极限.在求汽车行驶的路程时,教材采取“以不变代变”的方法,把变速直线运动的路程问题化归为匀速直线运动的路程问题,类比求曲边梯形面积的思想方法和基本步骤,可得:将区间[0,1]等分成n个小区间,在每个小区间上,由于速度函数v(t)的变化很小,可以认为汽车近似于做匀速直线运动,从而求得汽车在每个小区间上行驶路程的近似值.再求和得s的近似值,最后让n趋向于无穷大就得到s的精确值,与求曲边梯形的面积相比,这里采用的“以不变代变”的思想方法更直观、更容易理解.题型一题型二求曲边梯形的面积【例1】求由直线x=1,x=2和y=0
4、及曲线y=x3所围成的曲边梯形的面积S.分析:先作出草图,确定好曲边梯形的大致形状,再利用分割求和的方法求解.题型一题型二题型一题型二(4)取极限当分点数目越多,即Δx越小时,和式①的值就越接近曲边梯形ABCD的面积S.因此,当n→∞,即Δx→0时,和式①的极限就是所求的曲边梯形ABCD的面积.题型一题型二题型一题型二反思规则四边形和曲边梯形面积的求解方法如下:(1)规则四边形:利用四边形的面积公式.(2)曲边梯形:①思想:以直代曲;②步骤:化整为零→以直代曲→积零为整→无限逼近;③关键:以直代曲;④结果:分割越细,面积越精确.题型一题型二题型一题型二题型一题型二题型一题型
5、二题型一题型二题型一题型二题型一题型二题型一题型二