高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx

高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx

ID:53011238

大小:13.94 MB

页数:32页

时间:2020-04-12

高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx_第1页
高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx_第2页
高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx_第3页
高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx_第4页
高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx_第5页
资源描述:

《高中数学第一章统计案例1.1回归分析1.1.3可线性化的回归分析课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.1.3可线性化的回归分析一、非线性回归分析对于一些特殊的非线性函数,可以通过变量替换,把非线性回归转化为线性回归,然后用线性回归的方法进行研究,最后再通过相应的变换得到非线性回归方程.名师点拨非线性相关的变量,确定回归模型的方法:首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型.二、非线性回归方程特别提醒常见的几种函数模型的解析式在转变为线性相关关系时,要根据函数式的

2、特点,灵活地换元转变为线性函数关系.在使用常见的几种模型时要注意散点图的形状符合哪一种类型曲线的形状,有时不太容易辨别,可采用多种模型拟合,并转变为线性回归关系.利用线性相关系数来检验用哪一种拟合效果较好,就用哪一种模型.【做一做】(1)下列两个变量之间的关系不是函数关系的是()A.角度和它的余弦值B.正方形的边长和面积C.正n边形的边数和各内角度数之和D.人的年龄和身高(2)两个变量的散点图如图所示,可应用的函数类型是()A.y=a·xbB.y=a+blnxC.y=a·ebxD.y=解析:(1)函数关系就是一种变量之间的确定性的关系,A,B,C三项都是

3、函数关系,它们的函数表达式分别为f(θ)=cosθ,g(a)=a2,h(n)=nπ-2π.D项不是函数关系,对于年龄确定的人群,仍可以有不同的身高,故选D.答案:(1)D(2)B思考辨析判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.(1)线性回归分析就是由样本点去寻找贴近这些样本点的一条直线的数学方法.()(2)利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示.()(3)通过回归方程y=bx+a及其回归系数b,可以估计和观测变量的取值和变化趋势.()(4)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要

4、进行相关性检验.()答案:(1)√(2)√(3)√(4)×探究一探究二思维辨析已知模拟函数类型的可线性化回归分析【例1】在彩色显影中,由经验可知,形成染料的光学密度y与析出银的光学密度x由公式表示,现测得试验数据如下:试求y对x的回归方程.思路分析:对题中所给的公式(b<0)两边取自然对数,通过换元将其转化为含有x的一次方程,即两个新变量形成的线性回归方程,求出回归方程中的参数值,再通过一次变换把原参数值求出来即得要求的回归方程.探究一探究二思维辨析探究一探究二思维辨析探究一探究二思维辨析反思感悟已知曲线类型进行回归分析的步骤:(1)将非线性函数通过变量

5、代换转化为线性函数.(2)将所给数据点加以转换.(3)按最小二乘法原理求线性回归方程并进行检验.(4)将线性回归方程转换为关于原始变量x,y的回归方程.(5)依据回归方程作出预报.探究一探究二思维辨析变式训练1在试验中得到变量y与x的数据如下表:探究一探究二思维辨析探究一探究二思维辨析未知函数类型的非线性回归分析【例2】为了研究某种细菌繁殖的个数y随时间x变化的情况,收集数据如下:(1)用天数作为解释变量,繁殖个数作为预报变量,作出这些数据的散点图;(2)描述解释变量与预报变量之间的关系.思路分析:画出散点图,根据散点图选择恰当的函数模型,进行回归分析.

6、探究一探究二思维辨析解:(1)作出散点图如图所示.由计算器算得u=0.69x+1.115,则有y≈e0.69x+1.115.探究一探究二思维辨析反思感悟非线性回归方程的求法探究一探究二思维辨析变式训练2在试验中得到变量y与x的数据如下表:试求y与x之间的回归方程,并预测x=40时,y的值.探究一探究二思维辨析列表:作散点图如图所示,从散点图可以看出,两个变量x,z呈很强的线性相关关系.由表中的数据得到线性回归方程为z=0.277x-3.998.所以y关于x的指数回归方程为y=e0.277x-3.998.所以,当x=40时,y=e0.277×40-3.99

7、8≈1190.347.探究一探究二思维辨析因选错函数模型而致误【典例】在一次抽样调查中测得样本的5个样本点,数值如下表:如何建立y与x之间的回归方程?易错分析:本题易出现不画出散点图或求出相关系数r来进行相关性检验,而直接利用已知数据求回归方程,而本题的样本点不是线性相关的.探究一探究二思维辨析解:画出散点图如图①所示,观察可知y与x近似是反比例函数关系.探究一探究二思维辨析纠错心得平时学习时一定要对每一个基础知识理解透彻.探究一探究二思维辨析跟踪训练电容器充电后,电压达到100V,然后开始放电,由经验知道,此后电压U随时间t变化的规律用公式U=Aebt

8、(b<0)表示,现测得时间t(s)时的电压U(V)如下表:试求电压U对时间t的回

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。