资源描述:
《高中数学第三章概率复习与小结课件苏教版必修.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学必修3第3章概率复习与小结创设问题情境:1.回顾本章所涉及到的定义或概念;2.说出你对这些定义或概念的理解、及它们之间的区别和联系;3.你能否用知识网络将它们联系起来.【知识梳理】随机事件注意点:1.要搞清楚什么是随机事件的条件和结果;2.事件的结果是相应于“一定条件”而言的.因此,要弄清某一随机事件,必须明确何为事件发生的条件,何为在此条件下产生的结果;3.随机事件在一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.概率注意点:(1)求一个事件的概率的基
2、本方法是通过大量的重复试验;(3)概率是频率的稳定值,而频率是概率的近似值;(4)概率反映了随机事件发生的可能性的大小;(2)只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;(5)必然事件的概率为1,不可能事件的概率为0.因此例题分析例1指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是随机事件?(2)没有空气,动物也能生存下去;(5)某一天内电话收到的呼叫次数为0;(6)一个袋内装有性状大小相同的一个白球和一个黑球,从中任意摸出1个球则为白球.(1)若都是实数,则;(3)在标准大气压下
3、,水在温度时沸腾;(4)直线过定点;古典概型的概率公式几何概型的概率公式构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)P(A)=nn事件A所包含的基本事件的个数基本事件的总数P(A)=A=古典概型与几何概型的异同点:(1)相同点:古典概型要求基本事件有有限个,几何概型要求基本事件有无限个.(2)不同点:古典概型与几何概型中基本事件发生的可能性都是相等的.例2.掷一颗均匀的骰子,求掷得偶数点的概率.分析:先确定掷一颗均匀的骰子试验的样本空间Ω和掷得偶数点事件A,再确定样本空间
4、元素的个数n,和事件A的元素个数m.最后利用公式即可.解:掷一颗均匀的骰子,它的样本空间是Ω={1,2,3,4,5,6}∴n=6而掷得偶数点事件A={2,4,6}∴m=3∴P(A)=【点评】枚举法是计算古典概型中事件的重要方法,同时也要能熟练地运用图表法和树形图对某些等可能事件进行列举,教材例3的图表法采用坐标系的形式,横、纵轴分别表示第一、二次抛掷后向上的点数,此表能清楚直观地表现出各种情况,树形图对于元素不多而又易于分类的计数问题很有效,例4中画出了三“树”,其实只要画出一个树即可推知其余两个树的情况
5、.例3.如图所示,在边长为1的正方形OABC内任取一点P(x,y).(1)求点P到原点距离小于1的概率;(2)求以x,y,1为边长能构成锐角三角形的概率.【点评】解决几何概型问题,判断事件的等可能性这是易忽略点,其次要正确理解几何概型的含义:某一事件A发生的概率只与构成该事件区域的长度(面积或体积)成比例,而与位置和形状无关系,这是易错之处.为防止错误发生,解决实际问题时,一定要按部就班,先判断是否为几何概型,再严格按照几何概型的计算方法求解,最后做出正确判断,防止想当然,凭直觉.1.互斥事件概率的理解:
6、(1)互斥事件概率的加法公式,是在事件A和事件B互斥的前提下进行的.事件A、B互为对立事件的条件是:A∩B为不可能事件,A∪B为必然事件,且有P(A)+P(B)=1.(2)对立事件一定是互斥事件,而互斥事件却不一定是对立事件,只有当两个互斥事件中有一个发生时,它才能成为对立事件.(3)从集合的角度来看,若将总体看成全集U,将事件A看成由A所含的结果组成的集合,则A是U的子集,这时A的对立事件可看成是A的补集;判断两个事件是否为对立事件,首先要判断它们是否互斥;其次要确定它们中必定要有一个发生.2.从正面解
7、决问题较困难时,可转换思维视角从其反面考虑,即从事件的对立事件考虑,往往可以降低解题的难度,简化运算.此技巧为“正难则反”策略,此策略在互斥事件的概率中应用相当广泛和频繁,应引起我们足够的重视.例4.一只蚂蚁在边长分别为3,4,5的三角形ABC区域内任意爬行,则其恰在离三个顶点的距离都大于1的地方的概率是.ABC345【自我检测】1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的事件是()A.至少有1个白球和全是白球B.至少有1个白球和至少有1个红球C.恰有1个白球和恰有2个白球D.至少有
8、1个红球和全是白球2.如果事件A,B互斥,那么()A.A+B是必然事件B.是必然事件C.与一定互斥D.与一定不互斥3.下列命题中,真命题的个数是()①将一枚硬币抛两次,设事件A为”两次出现正面”,事件B为”只有一次出现反面”,则事件A与B是对立事件;②若事件A与B为对立事件,则事件A与B为互斥事件③若事件A与B为互斥事件,则事件A与B为对立事件;④若事件A与B为对立事件,则事件A+B为必然事件.A.1B.2C.3D.44.甲,