化工应用数学.pdf

化工应用数学.pdf

ID:52955388

大小:33.76 KB

页数:20页

时间:2020-04-03

化工应用数学.pdf_第1页
化工应用数学.pdf_第2页
化工应用数学.pdf_第3页
化工应用数学.pdf_第4页
化工应用数学.pdf_第5页
资源描述:

《化工应用数学.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、本文由yw8p62up0h贡献ppt文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机,查看。化工應用數學授課教師:郭修伯PartialDifferentiationandPartialDifferentialEquationsLecture7Chapter8PartialdifferentiationandP.D.E.s–Problemsrequiringthespecificationofmorethanoneindependent,variable.–Example,

2、thechangeoftemperaturedistributionwithinasyst,em:Thedifferentiationprocesscanbeperformedrelativetoanincrement,alchangeinthespacevariablegivingatemperaturegradient,orrateof,temperaturerise.PartialderivativesFigure8.1(contourmapforu)–Ifxisallowedtovary

3、whilstyremainsconstanttheningeneral,uwillalsovaryandthederivateofuw.r.t.xwillbetherateofchange,ofurelativetox,orthegradientinthechosendirection:?u?????x?yuisavectoralongthelineofgreatestslopeandhasamagnitudeeq,ualtothatslope.u=i?u?u+j=gradu?x?yui??u=

4、?x?u???δyduetothechangeiny:??y????u?uwillchangeby??δxduetothechangeinx,andby??x??u???u?δu=??δx+??δy??y???x???δu→duδx→dxδy→dy?u???u?du=??dx+??dy??y???x???the“totaldifferential”ofu?u???u???u??dx1+??dx2+⋯⋯+?du=?Ingeneralform:,??x???x???x?dxn??1??2??n?Im

5、portantfactconcerning“partialderivative”Thesymbol“?g“cannotbecancelledout!?Thetwopartsofthera,tiodefiningapartialderivativecanneverbeseparatedandconsideredal,one.–Markedcontrasttoordinaryderivativeswheredx,dycanbetreate,dseparatelyChangingtheindepend

6、entvariablesz=g(x,y)x=φ(u,v)y=ψ(u,v)?g???g?dz=??dx+??dy??y???x????φ???φ?dx=??du+??dv??u???v???ψ???ψ?dy=?,du+???dv??u???v?φ???g???ψ?ψ???g???φdz=???du+dv?+???du+dv,???y??u?v?????v???x???uw.r.t.u?z??z???x???z???y,?=????+?????u??x???u???y???u????z??g???φ

7、???,g???ψ?=????+?????u??x???u???y???u????z???xn??z??z???x1???z???x2????+????+⋯⋯+?=?,Ingeneralform:??x???u???x???u????x???u????u1?1??1,??2??1??n??1?page1IndependentvariablesnottrulyindependentVapourcompositionisafunctionoftemperature,pressureandliquid

8、,composition:y=f(T,P,x)However,boilingtemperatureisafunctionofpressureandliquidcom,posision:T=g(P,x)Therefore?f???f???f?dy=??dx+??dT+??dP??x???T???P??g???g?dT=??dx+??dP??x???P??f???f???g?????f???f???g??dy=???+?????dx+??,?+?????dP???x???T???x?????P???

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。