2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx

2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx

ID:52952028

大小:1.14 MB

页数:30页

时间:2020-04-04

2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx_第1页
2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx_第2页
2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx_第3页
2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx_第4页
2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx_第5页
资源描述:

《2019_2020学年高中数学第五章三角函数5.2.1三角函数的概念课件新人教A版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、5.2.1三角函数的概念一二三一、三角函数的定义1.在直角坐标系中,称以原点O为圆心,以单位长度为半径的圆为单位圆.如图,如果一个锐角α的终边与单位圆的交点是P(x,y),根据初中所学在直角三角形中正弦、余弦、正切的定义,你能否用点P的坐标表示sinα,cosα,tanα?这一结论能否推广到α是任意角时的情形呢?一二三提示:sinα=y,cosα=x,tanα=.这一结论可以推广到α是任意角.一二三2.填空如图,α是任意角,以α的顶点O为坐标原点,以α的始边为x轴的正半轴,建立平面直角坐标系.设P(

2、x,y)是α的终边与单位圆的交点.(1)把点P的纵坐标y叫做α的正弦函数,记作sinα,即y=sinα;(2)把点P的横坐标x叫做α的余弦函数,记作cosα,即x=cosα;(3)把点P的纵坐标与横坐标的比值叫做α的正切,记作tanα,即=tanα(x≠0).正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.3.填空一二三答案:B(2)如果在角α的终边上有一点M(3,4),那么如何求角α的三个三角函数值?一二三5.如果角α的终边落在y轴上,这时

3、其终边与单位圆的交点坐标是什么?sinα,cosα,tanα的值是否还存在?提示:终边与单位圆的交点坐标是(0,1)或(0,-1),这时tanα的值不存在,因为分母不能为零,但sinα,cosα的值仍然存在.6.填空三角函数的定义域如下表所示.一二三二、三角函数值的符号1.根据三角函数的定义,各个三角函数值是用单位圆上点的坐标表示的,当角在不同象限时,其与单位圆的交点坐标的符号就不同,因此其各个三角函数值的正负就不同,你能推导出sinα,cosα,tanα在不同象限内的符号吗?提示:当α在第一象限时

4、,sinα>0,cosα>0,tanα>0;当α在第二象限时,sinα>0,cosα<0,tanα<0;当α在第三象限时,sinα<0,cosα<0,tanα>0;当α在第四象限时,sinα<0,cosα>0,tanα<0.2.sinα,cosα,tanα在各个象限的符号如下:记忆口诀:“一全正,二正弦,三正切,四余弦”.一二三3.做一做判断下列各三角函数值的符号:一二三三、诱导公式一1.30°,390°,-330°三个角的终边有什么关系?它们与单位圆的交点坐标相同吗?这三个角的正弦值、余弦值、正切

5、值相等吗?提示:终边相同,与单位圆的交点坐标相同,三个角的正弦值、余弦值、正切值相等.2.填空诱导公式一(1)语言表示:终边相同的角的同一三角函数的值相等.一二三探究一探究二探究三思维辨析随堂演练利用三角函数的定义求三角函数值例1求解下列各题:(3)已知角α的始边与x轴的非负半轴重合,终边在射线4x-3y=0(x≤0)上,则cosα-sinα=.分析:(1)先求出x的值,再计算;(2)利用三角函数的定义的推广求解;(3)先在终边上取点,再利用定义求解.探究一探究二探究三思维辨析随堂演练探究一探究二探

6、究三思维辨析随堂演练探究一探究二探究三思维辨析随堂演练探究一探究二探究三思维辨析随堂演练反思感悟利用三角函数的定义求一个角的三角函数值有以下几种情况:(1)若已知角,则只需确定出该角的终边与单位圆的交点坐标,即可求出各三角函数值.(4)若已知角α终边上点的坐标含参数,则需进行分类讨论.探究一探究二探究三思维辨析随堂演练判断三角函数值的符号A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)判断下列各式的符号:分析:(1)由已知条件确定出sinα,cosα的符号即可确定角α的象限;(2)先判

7、断每个因式的符号,再确定积的符号.探究一探究二探究三思维辨析随堂演练(1)解析:由sinαtanα<0可知sinα,tanα异号,从而α为第二、第三象限角.由可知cosα,tanα异号,从而α为第三、第四象限角.综上可知,α为第三象限角,故选C.答案:C(2)解:①∵105°,230°分别为第二、第三象限角,∴sin105°>0,cos230°<0.于是sin105°·cos230°<0.探究一探究二探究三思维辨析随堂演练反思感悟三角函数符号的判定:对三角函数符号的判定,首先要判断角是第几象限角,然

8、后根据规律:“一全正、二正弦、三正切、四余弦”,即可确定三角函数的符号.探究一探究二探究三思维辨析随堂演练变式训练1(1)已知α=2,则点P(sinα,tanα)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限解析:因为,即α在第二象限,所以sinα>0,tanα<0,则点P(sinα,tanα)在第四象限.答案:D(2)已知角α的终边经过点(3a-9,a+2),且cosα≤0,sinα>0,则实数a的取值范围是()A.(-2,3]B.(-2,3)C.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。