浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx

浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx

ID:52932457

大小:4.86 MB

页数:33页

时间:2020-04-02

浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx_第1页
浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx_第2页
浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx_第3页
浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx_第4页
浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx_第5页
资源描述:

《浙江2019高考数学二轮复习专题四解析几何第2讲直线与圆锥曲线的位置关系课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2讲 直线与圆锥曲线的位置关系高考定位直线与圆锥曲线的位置关系一直是命题的热点,尤其是有关弦的问题以及存在性问题,计算量偏大,属于难点,要加强这方面的专题训练.真题感悟1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).考点整合①若a≠0,则当Δ>0时,直线与双曲线相交;当Δ=0

2、时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0,则直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线的方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.探究提高解决直线与圆锥曲线问题的

3、通法是联立方程,利用根与系数的关系、设而不求思想、弦长公式等简化计算;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.[考法2]有关圆锥曲线的中点弦问题【例1-2】如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.(1)解∵l:x-y-2=0,∴l与x轴的交点坐标为(2,0),探究提高对于弦中点问题常用“根与系数的关

4、系”或“点差法”求解,在使用根与系数的关系时,要注意使用条件Δ≥0,在用“点差法”时,要检验直线与圆锥曲线是否相交.【训练1】(2018·浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;探究提高(1)直线方程设为y=kx+b(斜截式)时,要注意考虑斜率是否存在;直线方程设为x=my+a(可称为x轴上的斜截式),这种设法不需考虑斜率是否存在.(2)若图形关系可转化为向量关系,则写出其向量关系,再将向量关系转化为坐标关系,关键是得出坐标关系.探究提高(1)探索性问题通常用“

5、肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.1.直线与抛物线位置关系的提醒(1)若点P在抛物线内,则过点P且和抛物线只有一个交点的直线只有一条,此直线与抛物线的对称轴平行;(2)若点P在抛物线上,则过点P且和抛物线只有一个交点的直线有两条,一条是抛物线的切线,另一条直线与抛物线的对称轴平行;(3)若点P在抛物线外,则过点P且和抛物线只有一个交点的直线有

6、三条,两条是抛物线的切线,另一条直线与抛物线的对称轴平行.4.存在性问题求解的思路及策略(1)思路:先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(2)策略:①当条件和结论不唯一时要分类讨论;②当给出结论而要推导出存在的条件时,先假设成立,再推出条件.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。