欢迎来到天天文库
浏览记录
ID:52897372
大小:1.63 MB
页数:19页
时间:2020-04-14
《陕西省吴堡县吴堡中学高中数学第二章平面向量基本定理课件2北师大版必修.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、平面向量基本定理教学目的:教学重点:教学难点:1.了解平面向量基本定理的证明.2.掌握平面向量基本定理及其应用.平面向量基本定理的应用.平面向量基本定理的理解.请同学们回顾向量的加法、减法和实数与向量的积,以及向量共线定理.1.三角形法则:2.平行四边形法则:CBAABCD一.向量的加法:首尾相连共同起点二.向量的减法:BAD共同起点指向被减数1.当时:2.当时:3.当时:与方向相同。方向:长度:与方向相反。二、向量共线定理:向量与非零向量共线的充要条件是有且只有一个实数,使得:今天我们继续来学习有关向量的知识:设、是同一平面内的两个不共线的向量
2、,是这一平面内的向量,我们研究与、之间的关系?首先,请大家在用平行四边形法则作出、、我们一起来作图(平行四边形法则:起点相同)㈠在平面内任取一点O,作㈡过点C作平行于直线OB的直线,与直线OA相交于M;过点C作平行于直线OA的直线,与直线OB相交于N;你们得到了什么?思考:我们能否用,把表示出来呢?BOAMNC现在要找与,与的关系,它们有什么样的关系呢?原来与共线;与共线。所以有且只有一个实数,使得:有且只有一个实数,使得:即思考2:是否这一平面内的任一向量都可以用,来表示呢?我们作图验证我们得到:这一平面内的任一向量都可以表示成:这样,以与为基
3、础,我们可以表示这一平面内的所有向量,我们就把这两个向量叫做:表示这一平面内所有向量的基底.(2)对你给的这两个向量有什么要求?思考3:(1)这一平面内所有向量的基底是否唯一呢?大家作图验证是否可以由其它两个向量来表示?我们得到:(1)基底不唯一;(2)要求这两个向量不共线;(3)如果基底选定,则,唯一确定,可以为零.(3)如果基底选定,,能唯一确定吗?能为零吗?既然这两个向量这么特别,我们一般用,表示.通过我们的努力,得到了:平面向量基本定理如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使我们把不共线的向
4、量,叫做表示这一平面内所有向量的一组基底.特别的:时,时,,与共线.时,,与共线.例1课堂练习:P84练习1已知向量、,求作向量.作法:(1)任取一点O,作(2)作平行四边形OACBBOAC于是就是.例2如右图示,平行四边形ABCD的两条对角线相交于点M,且,用,表示、、和.分析:因为ABCD为平行四边形可知M为AC与BD的中点.所以解:在平行四边形ABCD中又说明:我们在做有关向量的题型时,要先找清楚未知向量和已知向量间的关系,认真分析未知与已知之间的相关联系,从而使问题简化.例3如右图,、不共线,,用、表示.分析:求,由图可知而解:说明:同上
5、题一样,我们要找到与未知相关连的量,来解决问题,避免做无用功!课堂练习:一、下列说法中,正确的有:()1)一个平面内只有一对不共线向量可以作为表示该平面所有向量的基底;2)一个平面内有无数多对不共线向量可以作为表示该平面所有向量的基底;3)零向量不可以为基底中的向量.2、3二、已知ABC中,D为BC边的中点,试用,表示.解:三、如图,已知梯形ABCD,AB//CD,且AB=2DC,M、N分别是DC、AB的中点.请大家动手,从图中的线段AD、AB、BC、DC、MN对应的向量中确定一组基底,将其它向量用这组基底表示出来.ANMCDB三、如图,已知梯形
6、ABCD,AB//CD,且AB=2DC,M、N分别是DC、AB的中点.ANMCDB参考答案:解:取为基底,则有课堂小结:今天我们学习了“平面向量基本定理”及其应用.应用该定理的关键就是要找到未知与已知的联系,这就要求我们对向量的加法的三角形法则、平行四边形法则;向量减法的三角形法则;向量共线的充要条件这些知识掌握熟练!在定理中我们要注意“同一平面”、“两个不共线向量”、“任一”和“有且只有一对”这些关键词.课后作业:1.复习向量的加法、减法,向量共线的充要条件;以及平面向量基本定理;2.课本P85习题2-3第6、第7题;相应的练习题.3.预习平面
7、向量的坐标.
此文档下载收益归作者所有