七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx

七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx

ID:52847233

大小:228.86 KB

页数:20页

时间:2020-03-24

七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx_第1页
七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx_第2页
七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx_第3页
七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx_第4页
七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx_第5页
资源描述:

《七年级数学下册第二章平行线的性质第2课时平行线性质与判定的综合运用教学课件(新版)北师大版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.3平行线的性质第2课时平行线性质与判定的综合运用第二章相交线与平行线导入新课讲授新课当堂练习课堂小结1.进一步掌握平行线的性质,运用两条直线是平行判断角相等或互补;(重点)2.能够根据平行线的性质与判定进行简单的推理与计算.学习目标文字叙述符号语言图形相等两直线平行∴a∥b相等两直线平行∵∴a∥b互补两直线平行∴a∥b同位角内错角同旁内角∵∠1=∠2∠3=∠2∵∠2+∠4=180°abc12341.平行线的判定导入新课回顾与思考方法4:如图1,若a∥b,b∥c,则a∥c.()方法5:如图2,若a⊥b,a⊥c,则b∥c.()平行于同一条直线的两条直线平行垂直于同一条直线的两条

2、直线平行2.平行线的其它判定方法abc图1abc图2图形已知结果依据同位角内错角同旁内角122324))))))abababccca//b两直线平行同位角相等a//b两直线平行内错角相等同旁内角互补a//b两直线平行3.平行线的性质∠1=∠2∠3=∠2∠2+∠4=180°例1根据如图所示回答下列问题:(1)若∠1=∠2,可以判定哪两条直线平行?根据是什么?典例精析平行线性质与判定的综合运用讲授新课解:(1)∠1与∠2是内错角,若∠1=∠2,则根据“内错角相等,两直线平行”,可得EF∥CE;(2)若∠2=∠M,可以判定哪两条直线平行?根据是什么?(3)若∠2+∠3=180°,可以

3、判定哪两条直线平行?根据是什么?(2)∠2与∠M是同位角,若∠2=∠M,则根据“同位角相等,两直线平行”,可得AM∥BF;(3)∠2与∠3是同旁内角,若∠2+∠3=180°,则根据“同旁内角互补,两直线平行”,可得AC∥MD.例2如图,AB∥CD,如果∠1=∠2,那么EF与AB平行吗?说说你的理由.解:因为∠1=∠2,根据“内错角相等,两直线平行”,所以EF∥CD.又因为AB∥CD,根据“平行于同一条直线的两条直线平行”,所以EF∥AB.①∵∠1=_____(已知)∴AB∥CE②∵∠1+_____=180o(已知)∴CD∥BF③∵∠1+∠5=180o(已知)∴_____∥___

4、__.ABCE∠2④∵∠4+_____=180o(已知)∴CE∥AB∠3∠31.如图:13542CFEADB(内错角相等,两直线平行)(同旁内角互补,两直线平行)(同旁内角互补,两直线平行)(同旁内角互补,两直线平行)练一练2.已知∠3=45°,∠1与∠2互余,试说明AB//CD.解:由于∠1与∠2是对顶角,∴∠1=∠2.又∵∠1+∠2=90°(已知),∴∠1=∠2=45°.∵∠3=45°(已知),∴∠2=∠3.∴AB∥CD(内错角相等,两直线平行).123ABCD例3如图,已知直线a∥b,直线c∥d,∠1=107°,求∠2,∠3的度数.解:因为a∥b,根据“两直线平行,内错角

5、相等”.所以∠2=∠1=107°.因为c∥d,根据“两直线平行,同旁内角互补”,所以∠1+∠3=180°,所以∠3=180°-∠1=180°-107°=73°.例4如图,AB//CD,∠A=100°,∠C=110°,求∠AEC的度数.EABCD21CDEF121280807070150F解:过点E作EF//AB.∵AB//CD,EF//AB(已知),∴//(平行于同一直线的两直线平行).∴∠A+∠=180o,∠C+∠=180o(两直线平行,同旁内角互补).又∵∠A=100°,∠C=110°(已知),∴∠=°,∠=°(等量代换).∴∠AEC=∠1+∠2=°+°=°.1.如图,∠A

6、=∠D,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°当堂练习解析:∵∠A=∠D,∴AB∥CD.∵AB∥CD,∠B=20°,∴∠C=∠B=20°.B2.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°解析:由∠1=∠2,可根据“同位角相等,两直线平行”判断出a∥b,可得∠3=∠5.再根据邻补角互补可以计算出∠4的度数.∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=70°,∴∠5=70°,∴∠4=180°-70°=110°.D3.如图,AE∥CD,若∠1=37°,∠D=54°,求∠

7、2和∠BAE的度数.解:因为AE∥CD,根据“两直线平行,内错角相等”,所以∠2=∠1=37°.根据“两直线平行,同位角相等”,所以∠BAE=∠D=54°.4.一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=______度.解析:过B作BF∥AE,则CD∥BF∥AE.根据平行线的性质即可求解.过B作BF∥AE,则CD∥BF∥AE,∴∠BCD+∠1=180°.又∵AB⊥AE,∴AB⊥BF,∴∠ABF=90°,∴∠ABC+∠BCD=90°+180°=270

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。