欢迎来到天天文库
浏览记录
ID:38064309
大小:61.00 KB
页数:3页
时间:2019-05-28
《5.3.2第2课时 平行线的性质与判定的综合运用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2课时平行线的性质与判定的综合运用1.平行线判定与性质的综合应用.2.学会添加辅助线解决问题.自学指导:复习教材中平行线的判定与性质,完成下列各题.自学反馈1.如图,BE是AB的延长线,AD∥BC,AB∥CD,若∠D=100°,则∠C=80°,∠A=80°,∠CBE=80°.2.a、b、c为同一平面内的三条直线,下列判断不正确的是(D)A.若a⊥c,b⊥c,则a∥bB.若a∥c,b∥c,则a∥bC.若a∥b,b⊥c,则a⊥cD.若a⊥b,b⊥c,则a⊥c活动1探求新知如图,a∥c,a⊥b,直线c与b垂直吗?为什么?学生容易判断出直线b与c垂直,鉴于这一
2、点,教师应引导学生思考:(1)要说明b⊥c,根据两条直线互相垂直的意义,需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来的?(2)已知a⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°?(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理.活动2例题解析例下列各图中,已知AB∥EF,点C任意选取(在AB、EF之间,又在BF的左侧).请测量各图中∠B、∠C、∠F的度数并填入表格.∠B∠F∠C∠B与∠F度数之和图1图2通过上述实践,试猜想∠B、∠F、
3、∠C之间的关系,写出这种关系,并加以说明.教师投影题目:学生依据题意,画出类似图1、图2的图形,测量并填表,猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助?教师视学生情况进一步引导:①虽然AB∥EF,但是∠B与∠F不是同位角,也不是内错角或同旁内角,不能确定它们之间的关系.②∠B与∠C是直线AB、CF被直线BC所截而成的内错角,但是AB与CF不平行.能不能创造条件,应用平行线性质,学生自然想到过点C作CD∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD与EF平行,你能做到这
4、一点吗?以上分析后,学生先推理说明,师生交流,教师给出说理过程.解:作CD∥AB,因为AB∥EF,CD∥AB,所以CD∥EF(两条直线都与第三条直线平行,这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD∥AB,所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF.活动3跟踪训练如图,AB∥CD,试说明∠B、∠D、∠BED之间的数量关系.过点E作EF∥AB,易证∠B+∠D+∠BED=360°.
此文档下载收益归作者所有