欢迎来到天天文库
浏览记录
ID:52805586
大小:14.52 MB
页数:32页
时间:2020-03-15
《2018版高考数学复习第九章平面解析几何第3讲圆的方程课件理新人教版.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3讲 圆的方程最新考纲掌握确定圆的几何要素,掌握圆的标准方程与一般方程.知识梳理1.圆的定义和圆的方程定义平面内到_____的距离等于______的点的轨迹叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:______________圆心坐标:___________半径r=D2+E2-4F>0定点定长2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)d>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在___
2、__;(2)d=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在_____;(3)d<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在_____.圆外圆上圆内诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()答案(1)√(2)×(3)×(4)√2.(2015·北京卷)圆心为(1,1)且过原
3、点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2答案D3.若点(1,1)在圆(x-a)2+(y+a)2=4的内部,则实数a的取值范围是()A.(-1,1)B.(0,1)C.(-∞,-1)∪(1,+∞)D.a=±1解析因为点(1,1)在圆的内部,所以(1-a)2+(1+a)2<4,所以-14、2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4)55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.答案(x-2)2+y2=10考点一 圆的方程【例1】(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得5、的弦长等于6,则圆C的方程为________.答案(1)(x-3)2+y2=2(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0规律方法求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.答案(1)(x-2)2+y2=9(2)(x-1)2+y2=4考点二 与圆有关的最值问题规律方法把有关式子进行转化或利用6、所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.答案(1)D(2)[-1,1]考点三 与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.规律方法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用7、圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.[思想方法]1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.[易错防范]1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.2.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨
4、2=a+2,解得a=2或a=-1.当a=2时,方程不满足表示圆的条件,故舍去.当a=-1时,原方程为x2+y2+4x+8y-5=0,化为标准方程为(x+2)2+(y+4)2=25,表示以(-2,-4)为圆心,半径为5的圆.答案(-2,-4)55.(必修2P124A4改编)圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为________.答案(x-2)2+y2=10考点一 圆的方程【例1】(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则圆C的方程为________.(2)已知圆C经过P(-2,4),Q(3,-1)两点,且在x轴上截得
5、的弦长等于6,则圆C的方程为________.答案(1)(x-3)2+y2=2(2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0规律方法求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.答案(1)(x-2)2+y2=9(2)(x-1)2+y2=4考点二 与圆有关的最值问题规律方法把有关式子进行转化或利用
6、所给式子的几何意义解题,充分体现了数形结合以及转化的数学思想,其中以下几类转化极为常见:(2)形如t=ax+by的最值问题,可转化为动直线截距的最值问题;(3)形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间距离的平方的最值问题.答案(1)D(2)[-1,1]考点三 与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P的轨迹.规律方法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用
7、圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.[思想方法]1.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法,是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.[易错防范]1.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.2.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨
此文档下载收益归作者所有