欢迎来到天天文库
浏览记录
ID:52767197
大小:65.50 KB
页数:4页
时间:2020-03-30
《概率统计知识梳理(文科).doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第1讲 随机事件的概率1.随机事件和确定事件(1)在条件S下,一定会发生的事件叫做相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示.2.频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(
2、A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率.3.互斥事件与对立事件(1)互斥事件:若A∩B为不可能事件(A∩B=∅),则称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生.(2)对立事件:若A∩B为不可能事件,而A∪B为必然事件,那么事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率:P(A)=1.(3)不可能事件的概率:P(A)=0.(4)互斥事件的概率加法公式:①P(A∪B)=P(A)+P(B)(A,B互
3、斥).②P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An)(A1,A2,…,An彼此互斥).(5)对立事件的概率:P()=1-P(A).第2讲 古典概型1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.3.古典概型的概率公式P(A)=.第3讲 几何概型1.几何概型事件A理解为区域Ω的某一子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位
4、置和形状无关.满足以上条件的试验称为几何概型.2.几何概型中,事件A的概率计算公式P(A)=3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4第4讲 正态分布1.正态曲线及性质(1)正态曲线的定义函数φμ,σ(x)=e-,x∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,我们称φμ,σ(x)的图象(如图)为正态分布密度曲线,简称正态曲线.(2)正态曲线的解析式①指数的自变量是x定义域是R,即x∈(-∞,+∞).②解析式中含有两个常数:π和e,这是两个无理数.③解析式中含有两个参数:μ和σ
5、,其中μ可取任意实数,σ>0这是正态分布的两个特征数.④解析式前面有一个系数为,后面是一个以e为底数的指数函数的形式,幂指数为-.2.正态分布(1)正态分布的定义及表示如果对于任何实数a,b(a
6、内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)编号:先将总体的N个个体编号;(2)分段:确定分段间隔k,对编号分段,当(n是样本容量)是整数时,取k=;(3)确定首个个体:在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)获取样本:按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按
7、照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.4.分层抽样的步骤(1)分层:将总体按某种特征分成若干部分;4(2)确定比例:计算各层的个体数与总体的个体数的比;(3)确定各层应抽取的样本容量;(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.第6讲 用样本估计总体1.频率分布
此文档下载收益归作者所有