资源描述:
《2015高考数学考前必看系列材料之一 基本知识篇》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高考数学考前必看系列材料之一基本知识篇一、集合与简易逻辑1.研究集合问题,一定要抓住集合的代表元素,如:x
2、ylgx与y
3、ylgx及(x,y)
4、ylgx2.数形结合是解集合问题的常用方法,解题要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决;3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题;4.判断命题的真假要以真值表为依据。原命题与其逆否命题是等价命题,逆命题与其否
5、命题是等价命题,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假;5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若AB,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;(3)等价法:即利用等价关系"ABBA"判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;nn6.(1)含n个元素的集合的子集个数为2,真子集(非空子集)个数为2-1;(2)ABABAABB;(3)C(AB)CACB,C(A
6、B)CACB;IIIIII二、函数1.复合函数的有关问题(1)复合函数定义域求法:若已知fx()的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;2.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x)=f(x);(2)若f(x)是奇函数,0在其定义
7、域内,则f(0)0(可用于求参数);f(x)(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或1(f(x)≠0);f(x)(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦
8、然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;ab(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;24.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x
9、-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2ab的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2ab的周期函数;1(6)y=f(x)对x∈R时,f(x+a)=-f
10、(x)(或f(x+a)=,则y=f(x)是周期为2a的周期函f(x)数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;logblogbn+logbN7.(1)n(a>0,a≠1,b>0,n∈R);(2)logaN=(a>0,a≠1,b>0,b≠1);aalogablogaN(3)logab的符号由口诀“同正异负”记忆;(4)a=N(a>0,a≠1,N>0);8.能熟练地用定义证明函数的单调性,求反函数,
11、判断函数的奇偶性。9.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数-1不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与