因式分解典型例题

因式分解典型例题

ID:5261054

大小:942.00 KB

页数:11页

时间:2017-12-07

因式分解典型例题_第1页
因式分解典型例题_第2页
因式分解典型例题_第3页
因式分解典型例题_第4页
因式分解典型例题_第5页
资源描述:

《因式分解典型例题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、分解因式典型例题例题一例01选择题:对运用分组分解法分解因式,分组正确的是()(A)(B)(C)(D)典型例题二例02用分组分解法分解因式:(1);(2).分析本题所给多项式为四项多项式,属于分组分解法的基本题型,通过分组后提公因式或分组后运用公式可以达到分解的目的.解⑴(合理分组)(组内提公因式)(组间提公因式)⑵(注意符号)(组内运用公式)(组间运用公式)说明分组分解法应用较为灵活,分组时要有预见性,可根据分组后“求同”——有公因式或可运用公式的原则来合理分组,达到分解的目的.另外在应用分组分解法时

2、还应注意:①运用分组分解法时,可灵活选择分组方法,通常一个多项式分组方法不只一种,只要能达到分解法时,殊途同归.②分组时要添加带“-”的括号时,各项要注意改变符号,如⑵的第一步.典型例题三例03分解因式:分析本题按字母的降幂排列整齐,且没有缺项,系数分别为,,,.系数比相等的有或,因而可分组为、或、.解法一(学会分组的技巧)解法二说明根据“对应系数成比例”的原则合理分组,可谓分组的一大技巧!典型例题四例04分解因式:分析本例为四项多项式,可考虑用分组分解法来分解.见前例,可用“系数成比例”的规律来达到合

3、理分组的目的.解法一解法二说明本例属于灵活选择分组方法来进行因式分解的应用题,对于四项式,并不是只要所分组的项数相等,便可完成因式分解.要使分解成功,需考虑到分组后能否继续分解.本小题利用“对应系数成比例”的规律进行巧妙分组,可谓思维的独到之处,这样避免了盲目性,提高了分解的速度.11典型例题五例05把下列各式分解因式:(1);(2);(3).分析此组题项数较多,考虑用分组法来分解.解法(1)(2)(3)说明对于项数较多的多项式合理分组时,以“交叉项”为突破口,寻找“相应的平方项”进行分组,这使分组有了

4、一定的针对性,省时提速.如⑴中,“交叉项”为,相应的平方项为、;⑵中,“交叉项”为,相应的平方项为、.典型例题六例06分解因式:(1);(2).分析本题两例属于型的二次三项式,可用规律公式来加以分解.解(1),,(2),,.说明抓住符号变化的规律,直接运用规律.典型例题七例07分解因式:(1);(2).分析对(1),利用整体思想,将看作一个字母,则运用型分解;对(2),将其看作关于的二次三项式,则一次项系数为,常数项为,仍可用型的二次三项式的规律公式达到分解的目的.解(1)(2),,.典型例题八例08分

5、解因式:⑴;⑵;⑶;⑷.分析本组题有较强的综合性,且每小题均超过三项,因而可考虑通过分组来分解.解⑴法一:(可继续分解,方法很简单:,对于方法类似,可以自己探索)法二:11⑵(看作型式子分解)⑶⑷说明⑴中,虽然三法均达到分解目的,但从目前同学们知识范围来看,方法二较好,分组既要合理又要巧妙,使分组不仅达到分解目的,又能简化分解过程,降低思维难度.⑵式虽超过四项,但通过分组仍可巧妙分解,只是分组后不是通常的提公因式或运用公式,而是利用了型二次三项式的因式分解.将看做关于的二次三项式,.⑶式表面看无法分解,

6、既找不到公因式,又不符合公式特点,对待此类题目,应采用“先破后立”的方式来解决.即先做多项式乘法打破原式结构,然后寻找合适的方法.⑷式项数多,但仔细观察,项与项之间有着内在联系,可通过巧妙分组以求突破.但应注意:①不可混淆因式分解与整式乘法的意义.如⑶小题中做乘法的目的是为了分解因式,不可在分解中,半路再返回做乘法.②善于将外在形式复杂的题目看做熟悉类型,如⑵小题中.典型例题九例09分解因式:(1);(2)分析本组两个小题既无公因式可提又不符合公式特点,原题本身给出的分组形式无法继续进行,达到分解的目的

7、,对此类型题,可采用先去括号,再重新分组来进行因式分解.解⑴(乘法运算,去括号)(重新分组)⑵(乘法运算去括号)(重新分组)说明“先破后立,不破不立”.思维的独创性使表面看来无法分解的多项式找到最佳的分解方式.典型例题十例10分解因式。分析因式分解一般思路是:“一提、二代、三分组、其次考虑规律式(十字相乘法)”.即:首先考虑是否有公因式可提,若有公因式,先提取公因式;其次考虑可否套用公式,用公式法分解;再考虑是否可以分组分解;对形如二次三项式或准二次三项式可以考虑用“规律式”11(或十字相乘法)分解.按

8、照这样的思路,本题首应考虑用分组分解来尝试.解说明当时,多项式值为0,因而是的一个因式,因此,可从“凑因子”的角度考虑,把6拆成,使分组可行,分解成功.运用“凑因子”的技巧还可得出以下分解方法.法二:法三:(凑立方项)法四:(与凑立方项)(套用公式)法五:(拆项)法六:(凑平方差公式变项)法七:令则(为多项式一个因式,做变换)(做乘法展开)(还原回)说明以上七种方法中,前六种运用了因式分解的一种常用技巧——“拆项”(或添项),这种技巧以基本

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。