资源描述:
《2015届高考数学(文科)一轮总复习(资源包)第11篇概率.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第1讲 随机事件的概率知识梳理1.随机事件和确定事件(1)在一定条件下,必然的事件叫做必然事件.(2)在一定条件下,肯定的事件叫做不可能事件.(3)必然事件与事件统称为确定事件.(4)在一定条件下,可能发生也可能的事件,叫做随机事件.会发生不会发生不可能不发生频率3.互斥事件与对立事件(1)互斥事件:在任何一次试验中不能的两个事件.若事件A与事件B互斥,则P(A+B)=.(2)对立事件:如果两个互斥事件必有,则这两个事件为对立事件.若事件A与B对立,则P(A)=1-P(B).同时发生P(A)+P(B)一个发生辨析
2、感悟1.对随机事件概念的理解(1)“物体在只受重力的作用下会自由下落”是必然事件.(√)(2)“方程x2+2x+8=0有两个实根”是不可能事件.(√)(3)(2014·广州调研C项)“下周六会下雨”是随机事件.(√)2.对互斥事件与对立事件的理解(4)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(5)(2014·郑州调研B项)从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取一张,“抽取黑桃”与“抽取方块”是对立事件.(×)[感悟·提升]两个区别一是“互斥事件”与“对立事件”的区别
3、:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.如(5)中为互斥事件.二是“频率”与“概率”:频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次数足够多,所得频率就可以近似地当作随机事件的概率.考点一 事件的关系与运算【例1】一个均匀的正方体玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示
4、向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则:①A与B是互斥而非对立事件;②A与B是对立事件;③B与C是互斥而非对立事件;④B与C是对立事件.四个结论正确的是________.解析根据互斥与对立的定义作答,A∩B={出现点数1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C=Ω(Ω为必然事件),故事件B,C是对立事件.答案④规律方法对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所
5、求事件包含哪些试验结果,从而断定所给事件的关系.【训练1】对飞机连续射击两次,每次发射一枚炮弹.设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.解析设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅.故A与B,A与C,B与C,B与D为彼此互斥事件,而B∩D=∅,B∪D=I,故B与D互为对立事件.答案A与B,A与C,B与C,B与DB与D考点二 随
6、机事件的概率与频率【例2】某小型超市发现每天营业额Y(单位:万元)与当天进超市顾客人数X有关.据统计,当X=700时,Y=4.6;当X每增加10,Y增加0.05.已知近20天X的值为:1400,1100,1900,1600,1400,1600,2200,1100,1600,1600,1900,1400,1100,1600,2200,1400,1600,1600,1900,700.规律方法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.考点三 互斥事件、
7、对立事件的概率【例3】(2014·洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?排队人数012345人及5人以上概率0.10.160.30.30.10.04(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)法一记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+
8、P(F)=0.3+0.1+0.04=0.44.法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.1.对于给定的随机事件A,由于事件A发生的频率fn(A)随着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).2.从集合角度理解互斥和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成