16、-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2}D.{-1,0,1,2}[解析]∵M={-2,-1,0,1},N={-1,0,1,2,3},∴M∩N={-1,0,1},故选B.B1.利用数形结合的思想,将满足条件的集合用韦恩图或数轴一一表示出来,从而求集合的交集、并集,这是既简单又直观且是最基本、最常见的方法,要注意灵活运用.2.集合元素的互异性在解决集合的相等关系、子集关系、交集等时常遇到,忽视它很多时候会造成结果失误,解题时要多留意.解决集合问题时,常常要分类讨论,要注意划分标准的掌握,做到不重、不漏,注意检验.实例
17、引入请看下例:A={班上所有参加足球队同学}B={班上没有参加足球队同学}U={全班同学}那么S、A、B三个集合之间有什么关系?一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universeset).通常记作U.全集概念U实例引入请看下例:A={班上所有参加足球队同学}B={班上没有参加足球队同学}U={全班同学}那么U、A、B三个集合之间有什么关系?A={1,2,3,4}B={5,6,7,8}U={1,2,3,4,5,6,7,8}那么U、A、B三个集合之间有什么关系?全集1,2,5,63,47,8U1,23,4对于一个集合A,由全集U中不属于集合A的
18、所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集.补集概念记作:A即:A={x
19、x∈U且xA}UAA说明:补集是与全集同时存在的。补集的概念必须要有全集的限制.Venn图表示:AUA补集的性质(1)、A∪(A)=.(2)、A∩(A)=问题:在下面的范围内求方程的解集:(1)有理数范围;(2)实数范围.并回答不同的范围对问题结果有什么影响?解:(1)在有理数范围内只有一个解2,即:(2)在实数范围内有三个解2,,,即:补集例题例.设U={x
20、x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A,B.解:根据题意可知:U
21、={1,2,3,4,5,6,7,8},所以:A={4,5,6,7,8},B={1,2,7,8}.说明:可以结合Venn图来解决此问题.补集例题例6.设全集U={x
22、x是三角形},A={x
23、x是锐角三角形},B={x
24、x是钝角三角形}.求A∩B,(A∪B)解:根据三角形的分类可知A∩B=,A∪B={x
25、x是锐角三角形或钝角三角形},(A∪B)={x
26、x是直角三角形}.例.设全集为R,求A,B解:A5AAA例设U={x
27、x是小于9的正整