欢迎来到天天文库
浏览记录
ID:52521080
大小:4.02 MB
页数:291页
时间:2020-03-28
《小学奥数分类型讲解(60种).pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、小学奥数分类型讲解(60种)1、最值问题【最小值问题】例1外宾由甲地经乙地、丙地去丁地参观。甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。(《中华电力杯》少年数学竞赛决赛第一试试题)讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。他们将上面的线段分为了2个2500米,2个4000米,2个2000米。现要在他们各自的中间插入若干名民警,
2、要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。例2在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。1我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。这样
3、,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB。故,O点即为三只蚂蚁会面之处。【最大值问题】例1有三条线段a、b、c,并且a<b<c。判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)讲析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。其问题实质上是把这个定值拆成两个数,求这两个数为何值时,乘积最大。由等周长的长方形面积最大原理可知,(a+b)×c这组数的值最接近。故图(3)的面积最大。例2某商店有一天,估计将
4、进货单价为90元的某商品按100元售出后,能卖出500个。已知这种商品每个涨价1元,其销售量就减少10个。为了使这一天能赚得更多利润,售价应定为每个______元。(台北市数学竞赛试题)2讲析:因为按每个100元出售,能卖出500个,每个涨价1元,其销量减少10个,所以,这种商品按单价90元进货,共进了600个。现把600个商品按每份10个,可分成60份。因每个涨价1元,销量就减少1份(即10个);相反,每个减价1元,销量就增加1份。所以,每个涨价的钱数与销售的份数之和是不变的(为60),根据等周长长方形面积最大原理可知,当把60分为两个30时,即每个涨价30元,卖出30份,此时有最大的利润。
5、因此,每个售价应定为90+30=120(元)时,这一天能获得最大利润。2、最值规律【积最大的规律】(1)多个数的和一定(为一个不变的常数),当这几个数均相等时,它们的积最大。用字母表示,就是如果a1+a2+…+an=b(b为一常数),那么,当a1=a2=…=an时,a1×a2×…×an有最大值。例如,a1+a2=10,…………→…………;1+9=10→1×9=9;2+8=10→2×8=16;3+7=10→3×7=21;4+6=10→4×6=24;4.5+5.5=10→4.5×5.5=24.75;5+5=10→5×5=25;5.5+4.5=10→5.5×4.5=24.75;3…………→…………;
6、9+1=10→9×1=9;…………→…………由上可见,当a1、a2两数的差越小时,它们的积就越大;只有当它们的差为0,即a1=a2时,它们的积就会变得最大。三个或三个以上的数也是一样的。由于篇幅所限,在此不一一举例。由“积最大规律”,可以推出以下的结论:结论1所有周长相等的n边形,以正n边形(各角相等,各边也相等的n边形)的面积为最大。例如,当n=4时,周长相等的所有四边形中,以正方形的面积为最大。例题:用长为24厘米的铁丝,围成一个长方形,长宽如何分配时,它的面积为最大?解设长为a厘米,宽为b厘米,依题意得(a+b)×2=24即a+b=12由积最大规律,得a=b=6(厘米)时,面积最大为6×
7、6=36(平方厘米)。(注:正方形是特殊的矩形,即特殊的长方形。)结论2在三度(长、宽、高)的和一定的长方体中,以正方体的体积为最大。例题:用12米长的铁丝焊接成一个长方体,长、宽、高如何分配,它的体积才会最大?解设长方体的长为a米,宽为b米,高为c米,依题意得(a+b+c)×4=12即a+b+c=3由积最大规律,得a=b=c=1(米)时,长方体体积为最大。最大体积为1×1×1=1(立方米)。4(
此文档下载收益归作者所有